首页 > python教程

Keras自动下载的数据集/模型存放位置介绍

时间:2020-09-11 python教程 查看: 950

Mac

# 数据集
~/.keras/datasets/

# 模型
~/.keras/models/

Linux

# 数据集
~/.keras/datasets/

Windows

# win10
C:\Users\user_name\.keras\datasets

补充知识:Keras_gan生成自己的数据,并保存模型

我就废话不多说了,大家还是直接看代码吧~

from __future__ import print_function, division

from keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout
from keras.layers import BatchNormalization, Activation, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
import os
import matplotlib.pyplot as plt
import sys
import numpy as np

class GAN():
 def __init__(self):
 self.img_rows = 3
 self.img_cols = 60
 self.channels = 1
 self.img_shape = (self.img_rows, self.img_cols, self.channels)
 self.latent_dim = 100

 optimizer = Adam(0.0002, 0.5)

 # 构建和编译判别器
 self.discriminator = self.build_discriminator()
 self.discriminator.compile(loss='binary_crossentropy',
  optimizer=optimizer,
  metrics=['accuracy'])

 # 构建生成器
 self.generator = self.build_generator()

 # 生成器输入噪音,生成假的图片
 z = Input(shape=(self.latent_dim,))
 img = self.generator(z)

 # 为了组合模型,只训练生成器
 self.discriminator.trainable = False

 # 判别器将生成的图像作为输入并确定有效性
 validity = self.discriminator(img)

 # The combined model (stacked generator and discriminator)
 # 训练生成器骗过判别器
 self.combined = Model(z, validity)
 self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)

 def build_generator(self):

 model = Sequential()
 model.add(Dense(64, input_dim=self.latent_dim))
 model.add(LeakyReLU(alpha=0.2))
 model.add(BatchNormalization(momentum=0.8))

 model.add(Dense(128))
 model.add(LeakyReLU(alpha=0.2))
 model.add(BatchNormalization(momentum=0.8))

 model.add(Dense(256))
 model.add(LeakyReLU(alpha=0.2))
 model.add(BatchNormalization(momentum=0.8))

 model.add(Dense(512))
 model.add(LeakyReLU(alpha=0.2))
 model.add(BatchNormalization(momentum=0.8))

 model.add(Dense(1024))
 model.add(LeakyReLU(alpha=0.2))
 model.add(BatchNormalization(momentum=0.8))

 #np.prod(self.img_shape)=3x60x1
 model.add(Dense(np.prod(self.img_shape), activation='tanh'))
 model.add(Reshape(self.img_shape))

 model.summary()

 noise = Input(shape=(self.latent_dim,))
 img = model(noise)

 #输入噪音,输出图片
 return Model(noise, img)

 def build_discriminator(self):

 model = Sequential()

 model.add(Flatten(input_shape=self.img_shape))

 model.add(Dense(1024))
 model.add(LeakyReLU(alpha=0.2))

 model.add(Dense(512))
 model.add(LeakyReLU(alpha=0.2))

 model.add(Dense(256))
 model.add(LeakyReLU(alpha=0.2))

 model.add(Dense(128))
 model.add(LeakyReLU(alpha=0.2))

 model.add(Dense(64))
 model.add(LeakyReLU(alpha=0.2))

 model.add(Dense(1, activation='sigmoid'))
 model.summary()

 img = Input(shape=self.img_shape)
 validity = model(img)
 return Model(img, validity)

 def train(self, epochs, batch_size=128, sample_interval=50):

 ############################################################
 #自己数据集此部分需要更改
 # 加载数据集
 data = np.load('data/相对大小分叉.npy') 
 data = data[:,:,0:60]
 # 归一化到-1到1
 data = data * 2 - 1
 data = np.expand_dims(data, axis=3)
 ############################################################

 # Adversarial ground truths
 valid = np.ones((batch_size, 1))
 fake = np.zeros((batch_size, 1))

 for epoch in range(epochs):

  # ---------------------
  # 训练判别器
  # ---------------------

  # data.shape[0]为数据集的数量,随机生成batch_size个数量的随机数,作为数据的索引
  idx = np.random.randint(0, data.shape[0], batch_size)

  #从数据集随机挑选batch_size个数据,作为一个批次训练
  imgs = data[idx]

  #噪音维度(batch_size,100)
  noise = np.random.normal(0, 1, (batch_size, self.latent_dim))

  # 由生成器根据噪音生成假的图片
  gen_imgs = self.generator.predict(noise)

  # 训练判别器,判别器希望真实图片,打上标签1,假的图片打上标签0
  d_loss_real = self.discriminator.train_on_batch(imgs, valid)
  d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake)
  d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)

  # ---------------------
  # 训练生成器
  # ---------------------

  noise = np.random.normal(0, 1, (batch_size, self.latent_dim))

  # Train the generator (to have the discriminator label samples as valid)
  g_loss = self.combined.train_on_batch(noise, valid)

  # 打印loss值
  print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))

  # 没sample_interval个epoch保存一次生成图片
  if epoch % sample_interval == 0:
  self.sample_images(epoch)
  if not os.path.exists("keras_model"):
   os.makedirs("keras_model")
  self.generator.save_weights("keras_model/G_model%d.hdf5" % epoch,True)
  self.discriminator.save_weights("keras_model/D_model%d.hdf5" %epoch,True)

 def sample_images(self, epoch):
 r, c = 10, 10
 # 重新生成一批噪音,维度为(100,100)
 noise = np.random.normal(0, 1, (r * c, self.latent_dim))
 gen_imgs = self.generator.predict(noise)

 # 将生成的图片重新归整到0-1之间
 gen = 0.5 * gen_imgs + 0.5
 gen = gen.reshape(-1,3,60)

 fig,axs = plt.subplots(r,c) 
 cnt = 0 
 for i in range(r): 
  for j in range(c): 
  xy = gen[cnt] 
  for k in range(len(xy)): 
   x = xy[k][0:30] 
   y = xy[k][30:60] 
   if k == 0: 
   axs[i,j].plot(x,y,color='blue') 
   if k == 1: 
   axs[i,j].plot(x,y,color='red') 
   if k == 2: 
   axs[i,j].plot(x,y,color='green') 
   plt.xlim(0.,1.)
   plt.ylim(0.,1.)
   plt.xticks(np.arange(0,1,0.1))
   plt.xticks(np.arange(0,1,0.1))
   axs[i,j].axis('off')
  cnt += 1 
 if not os.path.exists("keras_imgs"):
  os.makedirs("keras_imgs")
 fig.savefig("keras_imgs/%d.png" % epoch)
 plt.close()

 def test(self,gen_nums=100,save=False):
 self.generator.load_weights("keras_model/G_model4000.hdf5",by_name=True)
 self.discriminator.load_weights("keras_model/D_model4000.hdf5",by_name=True)
 noise = np.random.normal(0,1,(gen_nums,self.latent_dim))
 gen = self.generator.predict(noise)
 gen = 0.5 * gen + 0.5
 gen = gen.reshape(-1,3,60)
 print(gen.shape)
 ###############################################################
 #直接可视化生成图片
 if save:
  for i in range(0,len(gen)):
  plt.figure(figsize=(128,128),dpi=1)
  plt.plot(gen[i][0][0:30],gen[i][0][30:60],color='blue',linewidth=300)
  plt.plot(gen[i][1][0:30],gen[i][1][30:60],color='red',linewidth=300)
  plt.plot(gen[i][2][0:30],gen[i][2][30:60],color='green',linewidth=300)
  plt.axis('off')
  plt.xlim(0.,1.)
  plt.ylim(0.,1.)
  plt.xticks(np.arange(0,1,0.1))
  plt.yticks(np.arange(0,1,0.1))
  if not os.path.exists("keras_gen"):
   os.makedirs("keras_gen")
  plt.savefig("keras_gen"+os.sep+str(i)+'.jpg',dpi=1)
  plt.close()
 ##################################################################
 #重整图片到0-1
 else:
  for i in range(len(gen)):
  plt.plot(gen[i][0][0:30],gen[i][0][30:60],color='blue')
  plt.plot(gen[i][1][0:30],gen[i][1][30:60],color='red')
  plt.plot(gen[i][2][0:30],gen[i][2][30:60],color='green')
  plt.xlim(0.,1.)
  plt.ylim(0.,1.)
  plt.xticks(np.arange(0,1,0.1))
  plt.xticks(np.arange(0,1,0.1))
  plt.show()

if __name__ == '__main__':
 gan = GAN()
 gan.train(epochs=300000, batch_size=32, sample_interval=2000)
# gan.test(save=True)

以上这篇Keras自动下载的数据集/模型存放位置介绍就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

展开全文
上一篇:在tensorflow以及keras安装目录查询操作(windows下)
下一篇:Python实现ElGamal加密算法的示例代码
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下