首页 > python教程

Pytorch实现将模型的所有参数的梯度清0

时间:2020-09-08 python教程 查看: 1151

有两种方式直接把模型的参数梯度设成0:

model.zero_grad()
optimizer.zero_grad()#当optimizer=optim.Optimizer(model.parameters())时,两者等效

如果想要把某一Variable的梯度置为0,只需用以下语句:

Variable.grad.data.zero_()

补充知识:PyTorch中在反向传播前为什么要手动将梯度清零?optimizer.zero_grad()的意义

optimizer.zero_grad()意思是把梯度置零,也就是把loss关于weight的导数变成0.

在学习pytorch的时候注意到,对于每个batch大都执行了这样的操作:

optimizer.zero_grad()             ## 梯度清零
preds = model(inputs)             ## inference
loss = criterion(preds, targets)  ## 求解loss
loss.backward()                   ## 反向传播求解梯度
optimizer.step()                  ## 更新权重参数

1、由于pytorch的动态计算图,当我们使用loss.backward()和opimizer.step()进行梯度下降更新参数的时候,梯度并不会自动清零。并且这两个操作是独立操作。

2、backward():反向传播求解梯度。

3、step():更新权重参数。

基于以上几点,正好说明了pytorch的一个特点是每一步都是独立功能的操作,因此也就有需要梯度清零的说法,如若不显示的进 optimizer.zero_grad()这一步操作,backward()的时候就会累加梯度。

以上这篇Pytorch实现将模型的所有参数的梯度清0就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

展开全文
上一篇:pytorch实现查看当前学习率
下一篇:python tkiner实现 一个小小的图片翻页功能的示例代码
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下