首页 > python教程

如何使用Python处理HDF格式数据及可视化问题

时间:2020-09-07 python教程 查看: 1023

原文链接:https://blog.csdn.net/Fairy_Nan/article/details/105914203

HDF也是一种自描述格式文件,主要用于存储和分发科学数据。气象领域中卫星数据经常使用此格式,比如MODIS,OMI,LIS/OTD等卫星产品。对HDF格式细节感兴趣的可以Google了解一下。

这一次呢还是以Python为主,来介绍如何处理HDF格式数据。Python中有不少库都可以用来处理HDF格式数据,比如h5py可以处理HDF5格式(pandas中 read_hdf 函数),pyhdf可以用来处理HDF4格式。此外,gdal也可以处理HDF(NetCDF,GRIB等)格式数据。

安装

首先安装相关库

上述库均可以通过conda包管理器进行安装,如果conda包管理器无法安装,对于windows系统,可以查找是否存在已打包的安装包,而unix系统可以通过源码编译安装。

数据处理和可视化

以LIS/OTD卫星闪电成像数据为例,处理HDF4格式数据并进行绘图:

import numpy as np

import matplotlib.pyplot as plt
from matplotlib import cm, colors

import seaborn as sns
import cartopy.crs as ccrs
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter

from pyhdf.SD import SD, SDC

sns.set_context('talk', font_scale=1.3)

data = SD('LISOTD_LRMTS_V2.3.2014.hdf', SDC.READ)
lon = data.select('Longitude')
lat = data.select('Latitude')
flash = data.select('LRMTS_COM_FR')

# 设置colormap
collev= ['#ffffff', '#ab18b0', '#07048f', '#1ba01f', '#dfdf18', '#e88f14', '#c87d23', '#d30001', '#383838']
levels = [0, 0.01, 0.02, 0.04, 0.06, 0.1, 0.12, 0.15, 0.18, 0.2]
cmaps = colors.ListedColormap(collev, 'indexed')
norm = colors.BoundaryNorm(levels, cmaps.N)

proj = ccrs.PlateCarree()

fig, ax = plt.subplots(figsize=(16, 9), subplot_kw=dict(projection=proj))

LON, LAT= np.meshgrid(lon[:], lat[:])

con = ax.contourf(LON, LAT, flash[:, :, 150], cmap=cmaps, norm=norm, levels=levels, extend='max')

cb = fig.colorbar(con, shrink=0.75, pad=0.02)
cb.cmap.set_over('#000000')
cb.ax.tick_params(direction='in', length=5)

ax.coastlines()

ax.set_xticks(np.linspace(-180, 180, 5), crs=proj)
ax.set_yticks(np.linspace(-90, 90, 5), crs=proj)

lon_formatter= LongitudeFormatter(zero_direction_label=True)
lat_formatter= LatitudeFormatter()

ax.xaxis.set_major_formatter(lon_formatter)
ax.yaxis.set_major_formatter(lat_formatter)

某月全球闪电密度分布
上述示例基于pyhdf进行HDF4格式数据处理和可视化,HDF4文件中包含的变量和属性获取方式见文末的Notebook,其中给出了 更详细的示例。

以下基于h5py读取HDF5格式数据,以OMI卫星O3数据为例:

import h5py

data = h5py.File('TES-Aura_L3-O3-M2005m07_F01_10.he5')
lon = data.get('/HDFEOS/GRIDS/NadirGrid/Data Fields/Longitude').value
lat = data.get('/HDFEOS/GRIDS/NadirGrid/Data Fields/Latitude').value
o3 = data.get('/HDFEOS/GRIDS/NadirGrid/Data Fields/O3').value

proj = ccrs.PlateCarree()

fig, ax = plt.subplots(figsize=(16, 9), subplot_kw=dict(projection=proj))
LON, LAT = np.meshgrid(lon[:], lat[:])
con = ax.contourf(LON, LAT, o3[10, :, :]*1e6, np.arange(0, 8.01, 0.1), vmin=0, vmax=8, cmap=cm.RdGy_r)

ax.coastlines()
ax.set_xticks(np.linspace(-180, 180, 5), crs=proj)
ax.set_yticks(np.linspace(-90, 90, 5), crs=proj)

lon_formatter = LongitudeFormatter(zero_direction_label=True)
lat_formatter = LatitudeFormatter()
ax.xaxis.set_major_formatter(lon_formatter)
ax.yaxis.set_major_formatter(lat_formatter)

cb = fig.colorbar(con, shrink=0.75, pad=0.02)
cb.set_ticks(np.arange(0, 8.01, 1))
cb.ax.tick_params(direction='in', length=5)

上述示例中使用类似unix中路径的方式获取相关变量,这在HDF格式数据中称为Groups。不同的组可以包含子组,从而形成类似嵌套的形式。详细的介绍可Google了解。

总结

到此这篇关于如何使用Python处理HDF格式数据及可视化问题的文章就介绍到这了,更多相关Python处理HDF格式数据内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!

展开全文
上一篇:Python Tornado核心及相关原理详解
下一篇:Python turtle库的画笔控制说明
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下