首页 > python教程

python删除指定列或多列单个或多个内容实例

时间:2020-09-07 python教程 查看: 1122

在python中进行数据处理,经常会遇到有些元素内容是不需要的。需要进行删除或者替换。本篇就详细探讨一下各种数据类型(series,dataframe)下的删除方法

随机创建一个DataFrame数据

import pandas as pd
import numpy as np
data=pd.DataFrame(np.random.randint(10,size=(5,3)),columns=['a','b','c'])
>>>
 a b c
0 3 8 2
1 9 9 5
2 4 5 1
3 2 7 5
4 1 2 8

Series:

isin反函数删除不需要的列部分元素,适合大批量:

S数据类型直接使用isin会选出该列包含的指定内容,我们的需求是删除指定内容就需要用到isin的反函数。但是python目前没有类似isnotin这种函数,所以我们需要使用-号来实现isnotin的方法

!=比较运算符方式,适合少量或者用作与同时满足a条件与b条件的情况

isin:

Series的场景

print(data['c'][data['c'].isin([1])])
>>>
2 1
Name: c, dtype: int64

print(data['c'][-data['c'].isin([1])])
>>>
0 2
1 5
3 5
4 8
Name: c, dtype: int64

print(data['c'][-data['c'].isin([1,2])])
>>>
1 5
3 5
4 8
Name: c, dtype: int64

DataFrame场景:

print(data[-data.isin([1,2])])#按Series逻辑操作df发现会出现NAN并没有删除掉
>>>
 a b c
0 3.0 8.0 NaN
1 9.0 9.0 5.0
2 4.0 5.0 NaN
3 NaN 7.0 5.0
4 NaN NaN 8.0
print(data[-data.isin([1,2])].dropna())#我们只需要再加一个dropna删除空值就好了
>>>
a b c
1 9.0 9.0 5.0

!=比较运算符:

Series的场景:

print(data['c'][data['c']!=1])
>>>
0 2
1 5
3 5
4 8
Name: c, dtype: int64

print(data['c'][(data['c']!=1)&((data['c']!=2))])
>>>
1 5
3 5
4 8
Name: c, dtype: int64

DataFrame场景:

分别删除a与b不同条件的数据

print(data[(data['a']!=1)&(data['c']!=2)]
>>>
 a b c
1 9 9 5
2 4 5 1
3 2 7 5

print(data[(data!=1)&(data!=2)].dropna()) #与isin原理相同
 a b c
1 9.0 9.0 5.0

以上这篇python删除指定列或多列单个或多个内容实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

展开全文
上一篇:Python3实现建造者模式的示例代码
下一篇:使用python修改文件并立即写回到原始位置操作(inplace读写)
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下