首页 > python教程

浅谈Keras参数 input_shape、input_dim和input_length用法

时间:2020-09-05 python教程 查看: 1823

在keras中,数据是以张量的形式表示的,不考虑动态特性,仅考虑shape的时候,可以把张量用类似矩阵的方式来理解。

例如

[[1],[2],[3]] 这个张量的shape为(3,1)

[[[1,2],[3,4]],[[5,6],[7,8]],[[9,10],[11,12]]]这个张量的shape为(3,2,2),

[1,2,3,4]这个张量的shape为(4,)

input_shape:即张量的shape。从前往后对应由外向内的维度。

input_length:代表序列长度,可以理解成有多少个样本

input_dim:代表张量的维度,(很好理解,之前3个例子的input_dim分别为2,3,1)

通过input_length和input_dim这两个参数,可以直接确定张量的shape。

常见的一种用法:

只提供了input_dim=32,说明输入是一个32维的向量,相当于一个一阶、拥有32个元素的张量,它的shape就是(32,)。

因此,input_shape=(32, )

补充知识:keras中的shape/input_shape

在keras中,数据是以张量的形式表示的,张量的形状称之为shape,表示从最外层向量逐步到达最底层向量的降维解包过程。“维”的也叫“阶”,形状指的是维度数和每维的大小。

比如,一个一阶的张量[1,2,3]的shape是(3,);

一个二阶的张量[[1,2,3],[4,5,6]]的shape是(2,3);

一个三阶的张量[[[1],[2],[3]],[[4],[5],[6]]]的shape是(2,3,1)

input_shape就是指输入张量的shape。

例如,input_dim=784,dim是指dimension(维度),说明输入是一个784维的向量,784维的向量怎么表示呢?[[...[1],[2],[3]]...],左边有784个左括号,这相当于一个一阶的张量,它的shape就是(784,)。

因此,input_shape=(784,)。

以上这篇浅谈Keras参数 input_shape、input_dim和input_length用法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

展开全文
上一篇:使用 prometheus python 库编写自定义指标的方法(完整代码)
下一篇:如何使用python记录室友的抖音在线时间
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下