时间:2020-09-03 python教程 查看: 1001
我就废话不多说了,大家还是直接看代码吧~
#!/usr/bin/env python
# encoding: utf-8
'''
@author: lele Ye
@contact: 1750112338@qq.com
@software: pycharm 2018.2
@file: 13mnist.py
@time: 2018/12/17 10:23
@desc:
'''
import tensorflow as tf
import scipy.misc
import matplotlib.pyplot as plt
import random
# 读取图像可任意大小
filenames = ['./tianchi.jpg']
# 创建文件读取队列
filename_queue = tf.train.string_input_producer(filenames)
# 一个阅读器,读取整个文件,返回文件名称key,以及文件中所有的内容value
reader = tf.WholeFileReader()
# Returns the next record (key, value) pair produced by a reader
key, value = reader.read(filename_queue)
images = tf.image.decode_jpeg(value) # tf.image.decode_png(value)
target_width = target_height = 224
# 裁切图片
with tf.Session() as sess:
# Coordinator的使用,用于多线程的协调
coord = tf.train.Coordinator()
# 启动所有graph收集到的队列运行器(queuerunners)
threads = tf.train.start_queue_runners(coord=coord)
height,width,channels = sess.run(tf.shape(images))
offset_height = random.randint(0,height-target_height)
offset_width = random.randint(0,width-target_width)
reshapeimg = tf.image.crop_to_bounding_box(images, offset_height=offset_height, offset_width=offset_width,
target_height=target_height,target_width=target_width)
print(type(reshapeimg)) # <class 'tensorflow.python.framework.ops.Tensor'>
reimg1 = reshapeimg.eval() # reimg1的类型是<class 'numpy.ndarray'>
scipy.misc.imsave('./crop.jpg', reimg1)
plt.imshow(reimg1)
plt.axis("off")
plt.show()
# 请求线程结束
coord.request_stop()
# 等待线程终止
coord.join(threads)
原始图像480x320x3:
裁剪后224x224x3:
补充知识:Tensorflow 图像增强(ImageDataGenerator)
当我们训练一个较为复杂的网络,并且我们的训练数据集有限时,网络十分容易陷入过拟合的状态。
解决这个问题的一个可能的有效方法是:进行数据增强,即通过已有的有限的数据集,通过图像处理等方法(旋转,剪切,缩放…),获得更多的,类似的,多样化的数据。
数据增强处理,不会占用更多的存储空间,即在数据增强过程中,原始的数据不会被修改,所有的处理过程都是在内存中 即时(on-the-fly) 的处理。
注意:
数据增强不一定是万能药(虽然数据多了),数据增强提高了原始数据的随机性,但是若 测试集或应用场景 并不具有这样的随机性,那么它将不会起到作用,还会增加训练所需的时间。
使用方法:
train_datagen = ImageDataGenerator(
rescale=1./255, #数据值除以255,[0-255] ->[0,1]
shear_range=0.2, #剪切强度(逆时针方向的剪切角度,以度为单位)
zoom_range=0.2, #随机缩放范围
horizontal_flip=True) #水平翻转
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
'data/train',
target_size=(150, 150),
batch_size=32,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
'data/validation',
target_size=(150, 150),
batch_size=32,
class_mode='binary')
model.fit_generator(
train_generator,
steps_per_epoch=2000,
epochs=50,
validation_data=validation_generator,
validation_steps=800)
以上这篇tensorflow图像裁剪进行数据增强操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。