时间:2020-09-02 python教程 查看: 932
一.官方文档
https://pypi.org/project/muggle-ocr/
二模块安装
pip install muggle-ocr
# 因模块过新,阿里/清华等第三方源可能尚未更新镜像,因此手动指定使用境外源,为了提高依赖的安装速度,可预先自行安装依赖:tensorflow/numpy/opencv-python/pillow/pyyaml
三.使用代码
# 导入包
import muggle_ocr
# 初始化;model_type 包含了 ModelType.OCR/ModelType.Captcha 两种
sdk = muggle_ocr.SDK(model_type=muggle_ocr.ModelType.OCR)
# ModelType.OCR 可识别光学印刷文本 这里个人觉得应该是官方文档写错了 官方文档是ModelType.Captcha 可识别光学印刷文本
with open(r"test1.png", "rb") as f:
b = f.read()
text = sdk.predict(image_bytes=b)
print(text)
# ModelType.Captcha 可识别4-6位验证码
sdk = muggle_ocr.SDK(model_type=muggle_ocr.ModelType.Captcha)
with open(r"test1.png", "rb") as f:
b = f.read()
text = sdk.predict(image_bytes=b)
print(text)
PS:下面看下 Python 实现全自动登录(真正的全自动,自动识别验证码)
你没有看错,全自动验证~~~
黑科技?还是黑代码?
我感觉这个看在你用啥,对不对?反正我用来(* * * * ) 你懂得
好了,先说一下用到的东西
关门放代码
from selenium import webdriver
from PIL import Image
if __name__ == '__main__':
wbe = webdriver.PhantomJS()
wbe.get("https://www.某个网站的登录页面.com/login/index.html")//你可以拿知乎,百度,等等测试
element = wbe.find_element_by_xpath('//*[@id="entry_name"]/p[3]/img')//验证码所在的xpath路径
left = element.location['x']
top = element.location['y']
right = element.location['x'] + element.size['width']
bottom = element.location['y'] + element.size['height']
im = Image.open(r'登录页.png')//全页面截屏
im = im.crop((left, top, right, bottom))
im.save('验证码.png')
#!/usr/bin/env python
# coding:utf-8
import requests
from hashlib import md5
class RClient(object):
def __init__(self, username, password, soft_id, soft_key):
self.username = username
self.password = md5(password).hexdigest()
self.soft_id = soft_id
self.soft_key = soft_key
self.base_params = {
'username': self.username,
'password': self.password,
'softid': self.soft_id,
'softkey': self.soft_key,
}
self.headers = {
'Connection': 'Keep-Alive',
'Expect': '100-continue',
'User-Agent': 'ben',
}
def rk_create(self, im, im_type, timeout=60):
"""
im: 图片字节
im_type: 题目类型
"""
params = {
'typeid': im_type,
'timeout': timeout,
}
params.update(self.base_params)
files = {'image': ('a.png', im)}
r = requests.post('http://api.ruokuai.com/create.json', data=params, files=files, headers=self.headers)
return r.json()
def rk_report_error(self, im_id):
"""
im_id:报错题目的ID
"""
params = {
'id': im_id,
}
params.update(self.base_params)
r = requests.post('http://api.ruokuai.com/reporterror.json', data=params, headers=self.headers)
return r.json()
def get_code():
rc = RClient('用户名', '密码', '94522', '62c235939b7240879453f31603733fd6')//想拿下测试的留言我,教你拿到测试账号
im = open('a.png', 'rb').read()
print rc.rk_create(im, 3040)
完整代码
#!/usr/bin/env python
# coding:utf-8
from selenium import webdriver
from PIL import Image
import requests
from hashlib import md5
import time
class RClient(object):
def __init__(self, username, password, soft_id, soft_key):
self.username = username
self.password = md5(password.encode("utf-8")).hexdigest()
self.soft_id = soft_id
self.soft_key = soft_key
self.base_params = {
'username': self.username,
'password': self.password,
'softid': self.soft_id,
'softkey': self.soft_key,
}
self.headers = {
'Connection': 'Keep-Alive',
'Expect': '100-continue',
'User-Agent': 'ben',
}
def rk_create(self, im, im_type, timeout=60):
"""
im: 图片字节
im_type: 题目类型
"""
params = {
'typeid': im_type,
'timeout': timeout,
}
params.update(self.base_params)
files = {'image': ('a.png', im)}
r = requests.post('http://api.ruokuai.com/create.json', data=params, files=files, headers=self.headers)
return r.json()
def rk_report_error(self, im_id):
"""
im_id:报错题目的ID
"""
params = {
'id': im_id,
}
params.update(self.base_params)
r = requests.post('http://api.ruokuai.com/reporterror.json', data=params, headers=self.headers)
return r.json()
def get_code(im_file):
rc = RClient('账号', '密码', '94522', '62c235939b7240879453f31603733fd6')
im_source = open(im_file, "rb").read()
print(rc.rk_create(im_source, 3040))
if __name__ == '__main__':
wbe = webdriver.PhantomJS()
wbe.get("https://www.dajiang365.com/login/index.html")
time.sleep(2)
wbe.save_screenshot("das.png")
element = wbe.find_element_by_xpath('//*[@id="entry_name"]/p[3]/img')
left = element.location['x']
top = element.location['y']
right = element.location['x'] + element.size['width']
bottom = element.location['y'] + element.size['height']
im = Image.open(r'das.png')
im = im.crop((left, top, right, bottom))
im.save('a.png')
time.sleep(2)
get_code("a.png")
总结
到此这篇关于python图片验证码识别最新模块muggle_ocr的示例代码的文章就介绍到这了,更多相关python 验证码识别模块muggle_ocr内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!