首页 > python教程

获取python运行输出的数据并解析存为dataFrame实例

时间:2020-08-31 python教程 查看: 1084

在学习xg的 时候,想画学习曲线,但无奈没有没有这个 evals_result_

AttributeError: 'Booster' object has no attribute 'evals_result_'

因为不是用的分类器或者回归器,而且是使用的train而不是fit进行训练的,看过源码fit才有evals_result_这个,导致训练后没有这个,但是又想获取学习曲线,因此肯定还需要获取训练数据。

运行的结果 上面有数据,于是就想自己解析屏幕的数据试一下,屏幕可以看到有我们迭代过程的数据,因此想直接获取屏幕上的数据,思维比较low但是简单粗暴。

接下来分两步完成:

1) 获取屏幕数据

import subprocess
import pandas as pd
top_info = subprocess.Popen(["python", "main.py"], stdout=subprocess.PIPE)
out, err = top_info.communicate()
out_info = out.decode('unicode-escape')
lines=out_info.split('\n')

注:这里的main.py就是自己之前执行的python文件

2) 解析文件数据:

ln=0
lst=dict()
for line in lines:
 if line.strip().startswith('[{}] train-auc:'.format(ln)):
 if ln not in lst.keys():
  lst.setdefault(ln, {})
 tmp = line.split('\t')
 t1=tmp[1].split(':')
 t2=tmp[2].split(':')
 if str(t1[0]) not in lst[ln].keys():
  lst[ln].setdefault(str(t1[0]), 0)
 if str(t2[0]) not in lst[ln].keys():
  lst[ln].setdefault(str(t2[0]), 0)
 lst[ln][str(t1[0])]=t1[1]
 lst[ln][str(t2[0])]=t2[1]
 ln+=1
json_df=pd.DataFrame(pd.DataFrame(lst).values.T, index=pd.DataFrame(lst).columns, columns=pd.DataFrame(lst).index).reset_index()
json_df.columns=['numIter','eval-auc','train-auc']
print(json_df)

整体代码:

import subprocess
import pandas as pd
top_info = subprocess.Popen(["python", "main.py"], stdout=subprocess.PIPE)
out, err = top_info.communicate()
out_info = out.decode('unicode-escape')
lines=out_info.split('\n')

ln=0
lst=dict()
for line in lines:
    if line.strip().startswith('[{}]    train-auc:'.format(ln)):
        if ln not in lst.keys():
            lst.setdefault(ln, {})
        tmp = line.split('\t')
        t1=tmp[1].split(':')
        t2=tmp[2].split(':')
        if str(t1[0]) not in lst[ln].keys():
            lst[ln].setdefault(str(t1[0]), 0)
        if str(t2[0]) not in lst[ln].keys():
            lst[ln].setdefault(str(t2[0]), 0)
        lst[ln][str(t1[0])]=t1[1]
        lst[ln][str(t2[0])]=t2[1]
        ln+=1
json_df=pd.DataFrame(pd.DataFrame(lst).values.T, index=pd.DataFrame(lst).columns, columns=pd.DataFrame(lst).index).reset_index()
json_df.columns=['numIter','eval-auc','train-auc']
print(json_df)

看下效果:

以上这篇获取python运行输出的数据并解析存为dataFrame实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

展开全文
上一篇:Keras构建神经网络踩坑(解决model.predict预测值全为0.0的问题)
下一篇:keras实现VGG16方式(预测一张图片)
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下