首页 > python教程

python 使用递归的方式实现语义图片分割功能

时间:2020-08-26 python教程 查看: 885

实现效果

第一张图为原图,其余的图为分割后的图形

代码实现:

# -*-coding:utf-8-*-
import numpy as np
import cv2

#----------------------------------------------------------------------
def obj_clip(img, foreground, border):
  result = []
  height ,width = np.shape(img)
  visited = set()
  for h in range(height):
    for w in range(width):
      if img[h,w] == foreground and not (h,w) in visited:
        obj = visit(img, height, width, h, w, visited, foreground, border)
        result.append(obj)
  return result
#----------------------------------------------------------------------
def visit(img, height, width, h, w, visited, foreground, border):
  visited.add((h,w))
  result = [(h,w)]
  if w > 0 and not (h, w-1) in visited:
    if img[h, w-1] == foreground: 
      result += visit(img, height, width, h, w-1, visited , foreground, border)
    elif border is not None and img[h, w-1] == border:
      result.append((h, w-1))
  if w < width-1 and not (h, w+1) in visited:
    if img[h, w+1] == foreground:
      result += visit(img, height, width, h, w+1, visited, foreground, border)
    elif border is not None and img[h, w+1] == border:
      result.append((h, w+1))
  if h > 0 and not (h-1, w) in visited:
    if img[h-1, w] == foreground:
      result += visit(img, height, width, h-1, w, visited, foreground, border)
    elif border is not None and img[h-1, w] == border:
      result.append((h-1, w))
  if h < height-1 and not (h+1, w) in visited:
    if img[h+1, w] == foreground :
      result += visit(img, height, width, h+1, w, visited, foreground, border) 
    elif border is not None and img[h+1, w] == border:
      result.append((h+1, w))
  return result
#----------------------------------------------------------------------
if __name__ == "__main__":
  import cv2
  import sys
  sys.setrecursionlimit(100000)
  img = np.zeros([400,400])
  cv2.rectangle(img, (10,10), (150,150), 1.0, 5)
  cv2.circle(img, (270,270), 70, 1.0, 5)
  cv2.line(img, (100,10), (100,150), 0.5, 5)
  #cv2.putText(img, "Martin",(200,200), 1.0, 5)
  cv2.imshow("img", img*255)
  cv2.waitKey(0)
  for obj in obj_clip(img, 1.0, 0.5):
    clip = np.zeros([400, 400])
    for h, w in obj:
      clip[h, w] = 0.2
    cv2.imshow("aa", clip*255)
    cv2.waitKey(0)

总结

到此这篇关于python 使用递归的方式实现语义图片分割的文章就介绍到这了,更多相关python 语义图片分割内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!

展开全文
上一篇:深入了解Python enumerate和zip
下一篇:带你学习Python如何实现回归树模型
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下