首页 > python教程

Python 执行矩阵与线性代数运算

时间:2020-08-21 python教程 查看: 889

问题

你需要执行矩阵和线性代数运算,比如矩阵乘法、寻找行列式、求解线性方程组等等。

解决方案

NumPy 库有一个矩阵对象可以用来解决这个问题。
矩阵类似于3.9小节中数组对象,但是遵循线性代数的计算规则。下面的一个例子展示了矩阵的一些基本特性:

>>> import numpy as np
>>> m = np.matrix([[1,-2,3],[0,4,5],[7,8,-9]])
>>> m
matrix([[ 1, -2, 3],
    [ 0, 4, 5],
    [ 7, 8, -9]])

>>> # Return transpose
>>> m.T
matrix([[ 1, 0, 7],
    [-2, 4, 8],
    [ 3, 5, -9]])

>>> # Return inverse
>>> m.I
matrix([[ 0.33043478, -0.02608696, 0.09565217],
    [-0.15217391, 0.13043478, 0.02173913],
    [ 0.12173913, 0.09565217, -0.0173913 ]])

>>> # Create a vector and multiply
>>> v = np.matrix([[2],[3],[4]])
>>> v
matrix([[2],
    [3],
    [4]])
>>> m * v
matrix([[ 8],
    [32],
    [ 2]])
>>>

可以在 numpy.linalg 子包中找到更多的操作函数,比如:

>>> import numpy.linalg

>>> # Determinant
>>> numpy.linalg.det(m)
-229.99999999999983

>>> # Eigenvalues
>>> numpy.linalg.eigvals(m)
array([-13.11474312, 2.75956154, 6.35518158])

>>> # Solve for x in mx = v
>>> x = numpy.linalg.solve(m, v)
>>> x
matrix([[ 0.96521739],
    [ 0.17391304],
    [ 0.46086957]])
>>> m * x
matrix([[ 2.],
    [ 3.],
    [ 4.]])
>>> v
matrix([[2],
    [3],
    [4]])
>>>

讨论

很显然线性代数是个非常大的主题,已经超出了本书能讨论的范围。 但是,如果你需要操作数组和向量的话, NumPy 是一个不错的入口点。 可以访问 NumPy 官网 http://www.numpy.org 获取更多信息。

以上就是Python 执行矩阵与线性代数运算的详细内容,更多关于Python 矩阵与线性代数运算的资料请关注python博客其它相关文章!

展开全文
上一篇:Python实现数字的格式化输出
下一篇:Python 日期与时间转换的方法
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下