首页 > python教程

浅析Python 序列化与反序列化

时间:2020-08-18 python教程 查看: 784

序列化是将对象的状态信息转换为可以存储或传输的形式的过程。在序列化期间,对象将其当前状态(存在内存中)写入到临时或持久性存储区(硬盘)。以后,可以通过从存储区中读取或反序列化对象的状态,重新创建该对象。

实现对象的序列化和反序列化在python中有两种方式:json 和 pickle。

其中json用于字符串 和 python数据类型间进行转换,pickle用于python特有的类型 和 python的数据类型间进行转换,pickle是python特有的。

1、JSON序列化:json.dumps()

info = {
  "name":"tj",
  "age":22
}
import json
print(info)
print(type(info))
print(json.dumps(info))
print(type(json.dumps(info)))

f = open("test.txt","w")
# f.write(info)  # TypeError: write() argument must be str, not dict
f.write(json.dumps(info)) # 正常写入文件 f.write(json.dumps(info)) 等价于 json.dump(info, f)
f.close()

>>>
{'name': 'tj', 'age': 22}
<class 'dict'>
{"name": "tj", "age": 22}
<class 'str'>

2、JSON反序列化:json.loads()

f = open("test.txt","r")
# print(f.read()["age"]) #TypeError: string indices must be integers
data = json.loads(f.read()) # data = json.loads(f.read()) 等价于 data = json.load(f)
print(data["age"])
f.close()

>>>
22

注意:对于以下这种情况json就不能处理了

import json
def hello(name):
  print("hello,",name)
info = {
  "name":"tj",
  "age":22,
  "func":hello
}
f = open("test2.txt","w")
f.write(json.dumps(info)) #TypeError: Object of type function is not JSON serializable
f.close()

所以:json用于字符串 和 python数据类型间进行转换

3、pickle序列化:pickle.dumps()

import pickle
def hello(name):
  print("hello,",name)
info = {
  "name":"tj",
  "age":22,
  "func":hello
}

print(pickle.dumps(info)) #可见pickle序列化的结果输出为二进制,所以应使用wb的方式往文件中写
f = open("test2.txt","wb")
f.write(pickle.dumps(info)) # 等价于 pickle.dump(info,f)
f.close()

>>>
b'\x80\x04\x957\x00\x00\x00\x00\x00\x00\x00}\x94(\x8c\x04name\x94\x8c\x04alex\x94\x8c\x03age\x94K\x16\x8c\x04func\x94\x8c\x08__main__\x94\x8c\x05hello\x94\x93\x94u.'

对于函数hello,序列化的不是内存地址,而是整个数据对象,函数可以序列化。

4、pickle反序列化:pickle.loads()

f = open("test2.txt","rb")
data = pickle.loads(f.read()) # 等价于data = pickle.load(f)
print(data)
print(data["name"])
print(data["func"])

>>>
{'name': 'tj', 'age': 22, 'func': <function hello at 0x00000179EF69C040>}
tj
<function hello at 0x00000179EF69C040>

5、多次序列化与反序列化

1)json

import json
info = {
  "name":"tj",
  "age":22
}

f = open("test3.txt","w")
f.write(json.dumps(info))
info['age'] = 21
f.write(json.dumps(info))
f.close()
# 
>>>
序列化两次后test3中的内容
test3.txt: {"name": "tj", "age": 22}{"name": "tj", "age": 21}

f = open("test3.txt","r")
# 报错,py3以上,多次dumps的文件反序列化报错,py2多次dumps的文件也能被反序列化,先序列化的先被反序列化
data = json.loads(f.read()) # json.decoder.JSONDecodeError
f.close()
print(data)

2)pickle

import pickle

info = {
  "name":"tj",
  "age":22
}

f = open("test2.txt","wb")
f.write(pickle.dumps(info)) # 等价于 pickle.dump(info,f)
info["sex"] = "女"
f.write(pickle.dumps(info)) # 等价于 pickle.dump(info,f)
f.close()

>>>
序列化两次后test2.txt中的内容
test2.txt: ��    }�(�name攲tj攲age擪u.��%    }�(�name攲tj攲age擪�sex攲濂硵u.

f = open("test2.txt","rb")
data = pickle.loads(f.read()) # 第一次反序列化正常
# data = pickle.loads(f.read()) # 第二次反序列化:EOFError: Ran out of input
print(data)
print(data["age"])
# print(data["sex"]) # KeyError: 'sex'

老王:是不是就不能多次序列化呢?那我修改后的数据还需要序列化写入到文件怎么办?

你:当然能多次序列化,把序列化后数据写到多个文件不就好了嘛。

以上就是浅析Python 序列化与反序列化的详细内容,更多关于Python 序列化与反序列化的资料请关注python博客其它相关文章!

展开全文
上一篇:Python创建临时文件和文件夹
下一篇:8种常用的Python工具
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下