首页 > python教程

基于Python pyecharts实现多种图例代码解析

时间:2020-08-18 python教程 查看: 1183

词云图

from pyecharts.charts import WordCloud
def word1():
  words= [
    ("Sam S Club", 10000),
    ("Macys", 6181),
    ("Amy Schumer", 4386),
    ("Jurassic World", 4055),
    ("Charter Communications", 2467),
    ("Chick Fil A", 2244),
    ("Planet Fitness", 1868),
    ("Pitch Perfect", 1484),
    ("Express", 1112),
    ("Home", 865),
    ("Johnny Depp", 847),
    ("Lena Dunham", 582),
    ("Lewis Hamilton", 555),
    ("KXAN", 550),
    ("Mary Ellen Mark", 462),
    ("Farrah Abraham", 366),
    ("Rita Ora", 360),
    ("Serena Williams", 282),
    ("NCAA baseball tournament", 273),
    ("Point Break", 265),
  ]
  worldcloud = (
    WordCloud()
    .add("", words, word_size_range=[20, 100])
    .set_global_opts(title_opts=opt.TitleOpts(title="WorldCloud-shape-diamond"))
  )
  # worldcloud = (
  #   WordCloud()
  #   .add("", words, word_size_range=[20, 100], shape=SymbolType.DIAMOND)
  #   .set_global_opts(title_opts=opt.TitleOpts(title="WorldCloud-shape-diamond"))
  # )
  worldcloud.render("wordl.html")
  os.system("wordl.html")

效果如下:

散点图

from pyecharts.charts import Scatter
import numpy as np

def sca():
  x_data = np.linspace(0, 10, 30)
  y1_data = np.sin(x_data)
  y2_data = np.cos(x_data)
  # 绘制散点图
  # 设置图表大小
  figsise = opt.InitOpts(width="800px", height="600px")
  scatter = Scatter(init_opts=figsise)
  # 添加数据
  scatter.add_xaxis(xaxis_data=x_data)
  scatter.add_yaxis(series_name="sin(x)散点图", #名称
           y_axis=y1_data, # 数据
           label_opts=opt.LabelOpts(is_show=False), # 数据不显示
           symbol_size=15, # 设置散点的大小
           symbol="triangle" # 设置散点的形状
           )
  scatter.add_yaxis(series_name="cos(x)散点图", y_axis=y2_data, label_opts=opt.LabelOpts(is_show=False))
  scatter.render()
  os.system("render.html")

效果如下:

饼状图

from pyecharts.charts import Pie
from pyecharts import options as optfrom pyecharts.faker import Faker as fa

def pie1():
  pie = (
    Pie()
    .add("", [list(z) for z in zip(fa.choose(), fa.values())])
    .set_global_opts(title_opts=opt.TitleOpts(title="pie-基本示例"))
    .set_series_opts(label_opts=opt.LabelOpts(formatter="{b}:{c}"))
  )
  pie.render()
  os.system("render.html")

def pie2():
  pie = (
    Pie()
      .add("", [list(z) for z in zip(fa.choose(), fa.values())], radius=["40%", "75%"])
      .set_global_opts(title_opts=opt.TitleOpts(title="pie-示例"),
               legend_opts=opt.LegendOpts(
                 orient="vertical", pos_top="15%", pos_left="2%"
               ))
      .set_series_opts(label_opts=opt.LabelOpts(formatter="{b}:{c}"))
  )
  pie.render()
  os.system("render.html")


def pie3():
  pie = (
    Pie()
      .add("", [list(z) for z in zip(fa.choose(), fa.values())],
         radius=["40%", "75%"],
         center=["25%", "50%"],
         rosetype="radius",
         label_opts=opt.LabelOpts(is_show=False))

      .add("", [list(z) for z in zip(fa.choose(), fa.values())],
         radius=["30%", "75%"],
         center=["75%", "50%"],
         rosetype="area")

      .set_global_opts(title_opts=opt.TitleOpts(title="pie-玫瑰图示例"))

  )
  pie.render()
  os.system("render.html")

def pie4():
  # 多饼图显示
  pie = (
    Pie()
    .add(
      "",
      [list(z) for z in zip(["剧情", "其他"], [25, 75])],
      center=["20%", "30%"],
      radius=[40, 60]
    )
    .add(
      "",
      [list(z) for z in zip(["奇幻", "其他"], [24, 76])],
      center=["55%", '30%'],
      radius=[40, 60]
    )
    .add(
      "",
      [list(z) for z in zip(["爱情", "其他"], [14, 86])],
      center=["20%", "70%"],
      radius=[40, 60]
    )
    .add(
      "",
      [list(z) for z in zip(["惊骇", "其他"], [1, 89])],
      center=["55%", "70%"],
      radius=[40, 60]
    )
    .set_global_opts(
      title_opts=opt.TitleOpts(title="pie-多饼图基本示例"),
      legend_opts=opt.LegendOpts(
        type_="scroll", pos_top="20%", pos_left="80%", orient="vertical"
      )
    )
    .set_series_opts(label_opts=opt.LabelOpts(formatter="{b}:{c}"))
  )
  pie.render()
  os.system("render.html")

直方图

from pyecharts.charts import Bar
from pyecharts import options as opt
from pyecharts.globals import ThemeType
from pyecharts.faker import Faker as fa
import random


def pye1():
  # 生成随机数据
  attr = fa.days_attrs
  v1 = [random.randrange(10, 150) for _ in range(31)]
  v2 = [random.randrange(10, 150) for _ in range(31)]

  # 初始化一个Bar对象,并设定一写初始化设置
  bar = Bar(init_opts=opt.InitOpts(theme=ThemeType.WHITE))
  # 添加数据
  bar.add_xaxis(attr)
  # is_selected: 打开图表时是否默认加载  grap:不同系列的柱间距离,百分比; color:指定柱状图Label的颜色
  bar.add_yaxis("test1", v1, gap="0", category_gap="20%", color=fa.rand_color())
  bar.add_yaxis("test2", v2, is_selected=False, gap="0%", category_gap="20%", color=fa.rand_color())
  # 全局配置
  # title_opts:图标标题相关设置
  # toolbox_opts: 工具栏相关设置
  # yaxis_opts/xaxis_opts: 坐标轴相关设置
  # axislabel_opts: 坐标轴签字相关设置
  # axisline_opts: 坐标轴轴线相关设置
  # datazoom_opts: 坐标轴轴线相关设置
  # markpoint_opts: 标记点相关设置
  # markpoint_opts:label_opts=opts.LabelOpts(is_show=False) 标签值是否叠加
  # markline_opts:标记线相关设置
  bar.set_global_opts(title_opts=opt.TitleOpts(title="主标题", subtitle="副标题"),
            toolbox_opts=opt.ToolboxOpts(),
            yaxis_opts=opt.AxisOpts(axislabel_opts=opt.LabelOpts(formatter="{value}/月"), name="这是y轴"),
            xaxis_opts=opt.AxisOpts(
            axisline_opts=opt.AxisLineOpts(linestyle_opts=opt.LineStyleOpts(color='blue')), name="这是x轴"),
            datazoom_opts=opt.DataZoomOpts()
            )
  bar.set_series_opts(markpoint_opts=opt.MarkPointOpts(data=[opt.MarkPointItem(type_="max", name="最大值"),
                                opt.MarkPointItem(type_="min", name="最小值"),
                                opt.MarkPointItem(type_="average", name="平均值")]),
            markline_opts=opt.MarkLineOpts(data=[opt.MarkLineItem(type_="min", name="最小值"),
                               opt.MarkLineItem(type_="max", name="最大值"),
                               opt.MarkLineItem(type_="average", name="平均值")]))
  # 指定生成html文件路径
  bar.render('test.html')
  os.system("test.html")

效果如下

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持python博客。

展开全文
上一篇:如何在python中实现线性回归
下一篇:python多线程semaphore实现线程数控制的示例
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下