首页 > python教程

细数nn.BCELoss与nn.CrossEntropyLoss的区别

时间:2020-08-12 python教程 查看: 1202

以前我浏览博客的时候记得别人说过,BCELoss与CrossEntropyLoss都是用于分类问题。可以知道,BCELoss是Binary CrossEntropyLoss的缩写,BCELoss CrossEntropyLoss的一个特例,只用于二分类问题,而CrossEntropyLoss可以用于二分类,也可以用于多分类。

不过我重新查阅了一下资料,发现同样是处理二分类问题,BCELoss与CrossEntropyLoss是不同的。下面我详细讲一下哪里不同。

1、使用nn.BCELoss需要在该层前面加上Sigmoid函数。

公式如下:

2、使用nn.CrossEntropyLoss会自动加上Sofrmax层。

公式如下:

可以看出,这两个计算损失的函数使用的激活函数不同,故而最后的计算公式不同。

补充拓展:pytorch的BCELoss和cross entropy

BCELoss:

torch.nn.BCELoss:

Input: (N, *)(N,∗) where *∗ means, any number of additional dimensions

Target: (N, *)(N,∗), same shape as the input

Output: scalar. If reduction is 'none', then (N, *)(N,∗), same shape as input.

这里的输入和target 目标必须形状一致,并且都是浮点数,二分类中一般用sigmoid的把输出挑出一个数:

>>> m = nn.Sigmoid()
>>> loss = nn.BCELoss()
>>> input = torch.randn(3, requires_grad=True)
>>> target = torch.empty(3).random_(2)
>>> output = loss(m(input), target)
>>> output.backward()

CrossEntropyLoss:

input(N,C) #n 是batch c是类别
target(N)

输入和target 形状是不同的crossEntropy 是自己会做softmax

>>> loss = nn.CrossEntropyLoss()
>>> input = torch.randn(3, 5, requires_grad=True)
>>> target = torch.empty(3, dtype=torch.long).random_(5)
>>> output = loss(input, target)
>>> output.backward()

以上这篇细数nn.BCELoss与nn.CrossEntropyLoss的区别就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

展开全文
上一篇:在python3中实现查找数组中最接近与某值的元素操作
下一篇:python计算导数并绘图的实例
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下