时间:2020-08-11 python教程 查看: 2453
Resize函数用于对PIL图像的预处理,它的包在:
from torchvision.transforms import Compose, CenterCrop, ToTensor, Resize
使用如:
def input_transform(crop_size, upscale_factor):
return Compose([
CenterCrop(crop_size),
Resize(crop_size // upscale_factor),
ToTensor(),
])
而Resize函数有两个参数,
CLASS torchvision.transforms.Resize(size, interpolation=2)
size (sequence or int) – Desired output size. If size is a sequence like (h, w), output size will be matched to this. If size is an int, smaller edge of the image will be matched to this number. i.e, if height > width, then image will be rescaled to (size * height / width, size)
interpolation (int, optional) – Desired interpolation. Default is PIL.Image.BILINEAR
size : 获取输出图像的大小
interpolation : 插值,默认的 PIL.Image.BILINEAR, 一共有4中的插值方法
Image.BICUBIC,PIL.Image.LANCZOS,PIL.Image.BILINEAR,PIL.Image.NEAREST
到此这篇关于pytorch之Resize()函数具体使用详解的文章就介绍到这了,更多相关pytorch Resize() 内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!