时间:2020-07-01 python教程 查看: 1286
python进行矩阵运算的方法:
1、矩阵相乘
>>>a1=mat([1,2]);
>>>a2=mat([[1],[2]]);
>>>a3=a1*a2 #1*2的矩阵乘以2*1的矩阵,得到1*1的矩阵
>>> a3
matrix([[5]])
2、矩阵对应元素相乘
>>>a1=mat([1,1]);
>>>a2=mat([2,2]);
>>>a3=multiply(a1,a2)
>>> a3
matrix([[2, 2]])
multiply()函数:数组和矩阵对应位置相乘,输出与相乘数组/矩阵的大小一致
3、矩阵点乘
>>>a1=mat([2,2]);
>>>a2=a1*2
>>>a2
matrix([[4, 4]])
4、矩阵求逆
>>>a1=mat(eye(2,2)*0.5)
>>> a1
matrix([[ 0.5, 0. ],
[ 0. , 0.5]])
>>>a2=a1.I #求矩阵matrix([[0.5,0],[0,0.5]])的逆矩阵
>>> a2
matrix([[ 2., 0.],
[ 0., 2.]])
5、矩阵转置
>>> a1=mat([[1,1],[0,0]])
>>> a1
matrix([[1, 1],
[0, 0]])
>>> a2=a1.T
>>> a2
matrix([[1, 0],
[1, 0]])
6、计算每一列、行的和
>>>a2=a1.sum(axis=0) #列和,这里得到的是1*2的矩阵
>>> a2
matrix([[7, 6]])
>>>a3=a1.sum(axis=1) #行和,这里得到的是3*1的矩阵
>>> a3
matrix([[2],
[5],
[6]])
>>>a4=sum(a1[1,:]) #计算第一行所有列的和,这里得到的是一个数值
>>> a4
5 #第0行:1+1;第2行:2+3;第3行:4+2
内容扩展:
numpy矩阵运算
(1) 矩阵点乘:m=multiply(A,B)
(2) 矩阵乘法:m1=a*b m2=a.dot(b)
(3) 矩阵求逆:a.I
(4) 矩阵转置:a.T
到此这篇关于python如何进行矩阵运算的文章就介绍到这了,更多相关python进行矩阵运算的方法内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!