时间:2020-08-06 python教程 查看: 1589
本篇博客通过例子的解释试图来描述清楚ix,尤其是与iloc和loc的联系。
首先,再次介绍这三种方法的概述:
1 使用ix切分Series
请注意:在pandas版本0.20.0及其以后版本中,ix已经不被推荐使用,建议采用iloc和loc实现ix。这是为什么呢?这是由于ix的复杂特点可能使ix使用起来有些棘手:
接下来举例说明这2个特点。
1.1 特点1举例
>>> s = pd.Series(np.nan, index=[49,48,47,46,45, 1, 2, 3, 4, 5])
>>> s
49 NaN
48 NaN
47 NaN
46 NaN
45 NaN
1 NaN
2 NaN
3 NaN
4 NaN
5 NaN
现在我们来看使用整数3切片有什么结果:
在这个例子中,s.iloc[:3]读取前3行(因为iloc把3看成是位置position),而s.loc[:3]读取的是前8行(因为loc把3看作是索引的标签label)
>>> s.iloc[:3] # slice the first three rows
49 NaN
48 NaN
47 NaN
>>> s.loc[:3] # slice up to and including label 3
49 NaN
48 NaN
47 NaN
46 NaN
45 NaN
1 NaN
2 NaN
3 NaN
>>> s.ix[:3] # the integer is in the index so s.ix[:3] works like loc
49 NaN
48 NaN
47 NaN
46 NaN
45 NaN
1 NaN
2 NaN
3 NaN
注意:s.ix[:3]返回的结果与s.loc[:3]一样,这是因为如果series的索引是整型的话,ix会首先去寻找索引中的标签3而不是去找位置3。
如果,我们试图去找一个不在索引中的标签,比如说是6呢?
>>> s.iloc[:6]
49 NaN
48 NaN
47 NaN
46 NaN
45 NaN
1 NaN
>>> s.loc[:6]
KeyError: 6
>>> s.ix[:6]
KeyError: 6
在上面的例子中,s.iloc[:6]正如我们所期望的,返回了前6行。而,s.loc[:6]返回了KeyError错误,这是因为标签6并不在索引中。
那么,s.ix[:6]报错的原因是什么呢?正如我们在ix的特点1所说的那样,如果索引只有整数类型,那么ix仅使用基于标签的索引,而不会回退到基于位置的索引。如果标签不在索引中,则会引发错误。
1.2 特点2举例
接着例子1来说,如果我们的索引是一个混合的类型,即不仅仅包括整型,也包括其他类型,如字符类型。那么,给ix一个整型数字,ix会立即使用iloc操作,而不是报KeyError错误。
>>> s2 = pd.Series(np.nan, index=['a','b','c','d','e', 1, 2, 3, 4, 5])
>>> s2.index.is_mixed() # index is mix of different types
True
>>> s2.ix[:6] # now behaves like iloc given integer
a NaN
b NaN
c NaN
d NaN
e NaN
1 NaN
注意:在这种情况下,ix也可以接受非整型,这样就是loc的操作:
>>> s2.ix[:'c'] # behaves like loc given non-integer
a NaN
b NaN
c NaN
这个例子就说明了ix特点2。
正如前面所介绍的,ix的使用有些复杂。如果仅使用位置或者标签进行切片,使用iloc或者loc就行了,请避免使用ix。
2 在Dataframe中使用ix实现复杂切片
有时候,在使用Dataframe进行切片时,我们想混合使用标签和位置来对行和列进行切片。那么,应该怎么操作呢?
举例,考虑有下述例子中的Dataframe。我们想得到直到包含标签'c'的行和前4列。
>>> df = pd.DataFrame(np.nan,
index=list('abcde'),
columns=['x','y','z', 8, 9])
>>> df
x y z 8 9
a NaN NaN NaN NaN NaN
b NaN NaN NaN NaN NaN
c NaN NaN NaN NaN NaN
d NaN NaN NaN NaN NaN
e NaN NaN NaN NaN NaN
在pandas的早期版本(0.20.0)之前,ix可以很好地实现这个功能。
我们可以使用标签来切分行,使用位置来切分列(请注意:因为4并不是列的名字,因为ix在列上是使用的iloc)。
>>> df.ix[:'c', :4]
x y z 8
a NaN NaN NaN NaN
b NaN NaN NaN NaN
c NaN NaN NaN NaN
在pandas的后来版本中,我们可以使用iloc和其它的一个方法就可以实现上述功能:
>>> df.iloc[:df.index.get_loc('c') + 1, :4]
x y z 8
a NaN NaN NaN NaN
b NaN NaN NaN NaN
c NaN NaN NaN NaN
get_loc() 是得到标签在索引中的位置的方法。请注意,因为使用iloc切片时不包括最后1个点,因为我们必须加1。
可以看到,只使用iloc更好用,因为不必理会ix的那2个“繁琐”的特点。
到此这篇关于pandas中ix的使用详细讲解的文章就介绍到这了,更多相关pandas ix内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!