首页 > python教程

python实现梯度下降和逻辑回归

时间:2020-07-30 python教程 查看: 916

本文实例为大家分享了python实现梯度下降和逻辑回归的具体代码,供大家参考,具体内容如下

import numpy as np
import pandas as pd
import os

data = pd.read_csv("iris.csv") # 这里的iris数据已做过处理
m, n = data.shape
dataMatIn = np.ones((m, n))
dataMatIn[:, :-1] = data.ix[:, :-1]
classLabels = data.ix[:, -1]

# sigmoid函数和初始化数据
def sigmoid(z):
 return 1 / (1 + np.exp(-z))

# 随机梯度下降
def Stocgrad_descent(dataMatIn, classLabels):
 dataMatrix = np.mat(dataMatIn) # 训练集
 labelMat = np.mat(classLabels).transpose() # y值
 m, n = np.shape(dataMatrix) # m:dataMatrix的行数,n:dataMatrix的列数
 weights = np.ones((n, 1)) # 初始化回归系数(n, 1)
 alpha = 0.001 # 步长
 maxCycle = 500 # 最大循环次数
 epsilon = 0.001
 error = np.zeros((n,1))
 for i in range(maxCycle):
  for j in range(m):
   h = sigmoid(dataMatrix * weights) # sigmoid 函数
   weights = weights + alpha * dataMatrix.transpose() * (labelMat - h) # 梯度
  if np.linalg.norm(weights - error) < epsilon:
   break
  else:
   error = weights
  return weights

# 逻辑回归
def pred_result(dataMatIn):
 dataMatrix = np.mat(dataMatIn)
 r = Stocgrad_descent(dataMatIn, classLabels)
 p = sigmoid(dataMatrix * r) # 根据模型预测的概率

 # 预测结果二值化
 pred = []
 for i in range(len(data)):
  if p[i] > 0.5:
   pred.append(1)
  else:
   pred.append(0)
 data["pred"] = pred
 os.remove("data_and_pred.csv") # 删除List_lost_customers数据集 # 第一次运行此代码时此步骤不要
 data.to_csv("data_and_pred.csv", index=False, encoding="utf_8_sig") # 数据集保存
pred_result(dataMatIn)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持python博客。

展开全文
上一篇:详解Python 实现 ZeroMQ 的三种基本工作模式
下一篇:Python动态强类型解释型语言原理解析
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下