首页 > python教程

python实现最速下降法

时间:2020-07-30 python教程 查看: 1161

本文实例为大家分享了python实现最速下降法的具体代码,供大家参考,具体内容如下

代码:

from sympy import *
import numpy as np
def backtracking_line_search(f,df,x,x_k,p_k,alpha0):
  rho=0.5
  c=10**-4
  alpha=alpha0
  replacements1=zip(x,x_k)
  replacements2=zip(x,x_k+alpha*p_k)
  f_k=f.subs(replacements1)
  df_p=np.dot([df_.subs(replacements1) for df_ in df],p_k)
  while f.subs(replacements2)>f_k+c*alpha*df_p:
    alpha=rho*alpha
    replacements2 = zip(x, x_k +alpha * p_k)
  return alpha
def stepest_line_search(f,x,x0,alpha0):
  df = [diff(f, x_) for x_ in x]
  x_k=x0
  alpha=alpha0
  replacements=zip(x,x_k)
  len_df = sqrt(np.sum([df_.subs(replacements) ** 2 for df_ in df]))
  while len_df>1e-6:
    p_k=-1*np.array([df_.subs(replacements) for df_ in df])
    alpha = backtracking_line_search(f, df, x, x_k, p_k, alpha)
    x_k=x_k+alpha*p_k
    replacements = zip(x, x_k)
    len_df=np.sum([df_.subs(replacements)**2 for df_ in df])
  return x_k
if __name__=="__main__":
  init_printing(use_unicode=True)
  x1 = symbols("x1")
  x2 = symbols("x2")
  x = np.array([x1, x2])
  f = 100 * (x2 - x1 ** 2)**2 + (1 - x1) ** 2
  ans=stepest_line_search(f, x, np.array([1.2, 1]), 1)
  print "the minimal value in point:",ans

分析:

这个采用的是backtracking line search来寻找alpha。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持python博客。

展开全文
上一篇:Python操作Excel工作簿的示例代码(\*.xlsx)
下一篇:PyQt5+python3+pycharm开发环境配置教程
输入字:
相关知识
Python 实现图片色彩转换案例

我们在看动漫、影视作品中,当人物在回忆过程中,体现出来的画面一般都是黑白或者褐色的。本文将提供将图片色彩转为黑白或者褐色风格的案例详解,感兴趣的小伙伴可以了解一下。

python初学定义函数

这篇文章主要为大家介绍了python的定义函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助,希望能够给你带来帮助

图文详解Python如何导入自己编写的py文件

有时候自己写了一个py文件,想要把它导入到另一个py文件里面,所以下面这篇文章主要给大家介绍了关于Python如何导入自己编写的py文件的相关资料,需要的朋友可以参考下

python二分法查找实例代码

二分算法是一种效率比较高的查找算法,其输入的是一个有序的元素列表,如果查找元素包含在列表中,二分查找返回其位置,否则返回NONE,下面这篇文章主要给大家介绍了关于python二分法查找的相关资料,需要的朋友可以参考下