时间:2020-07-25 python教程 查看: 1599
任务调度应用场景
所谓的任务调度是指安排任务的执行计划,即何时执行,怎么执行等。在现实项目中经常出现它们的身影;特别是数据类项目,比如实时统计每5分钟网站的访问量,就需要每5分钟定时从日志数据分析访问量。
总结下任务调度应用场景:
任务调度工具
本文介绍的是python中的任务调度库,APScheduler(advance python scheduler)。如果你了解Quartz的话,可以看出APScheduler是Quartz的python实现;APScheduler提供了基于时间,固定时间点和crontab方式的任务调用方案, 可以当作一个跨平台的调度工具来使用。
APScheduler
组件介绍
APScheduler由5个部分组成:触发器、调度器、任务存储器、执行器和任务事件。
安装
pip install apscheduler
简单例子
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.executors.pool import ThreadPoolExecutor, ProcessPoolExecutor
from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore
from apscheduler.events import EVENT_JOB_EXECUTED, EVENT_JOB_ERROR
import logging
import datetime
# 任务执行函数
def job_func(job_id):
print('job %s is runed at %s' % (job_id, datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')))
# 事件监听
def job_exception_listener(event):
if event.exception:
# todo:异常处理, 告警等
print('The job crashed :(')
else:
print('The job worked :)')
# 日志
logging.basicConfig()
logging.getLogger('apscheduler').setLevel(logging.DEBUG)
# 定义一个后台任务非阻塞调度器
scheduler = BackgroundScheduler()
# 添加一个任务到内存中
# 触发器:trigger='interval' seconds=10 每10s触发执行一次
# 执行器:executor='default' 线程执行
# 任务存储器:jobstore='default' 默认内存存储
# 最大并发数:max_instances
scheduler.add_job(job_func, trigger='interval', args=[1], id='1', name='a test job', max_instances=10, jobstore='default', executor='default', seconds=10)
# 设置任务监听
scheduler.add_listener(job_exception_listener, EVENT_JOB_EXECUTED | EVENT_JOB_ERROR)
# 启动调度器
scheduler.start()
运行情况:
job 1 is runed at 2020-03-21 20:00:38
The job worked :)
job 1 is runed at 2020-03-21 20:00:48
The job worked :)
job 1 is runed at 2020-03-21 20:00:58
The job worked :)
触发器
触发器决定何时执行任务,APScheduler支持的触发器有3种
trigger='interval':按固定时间周期执行,支持weeks,days,hours,minutes, seconds, 还可指定时间范围
sched.add_job(job_function, 'interval', hours=2, start_date='2010-10-10 09:30:00', end_date='2014-06-15 11:00:00')
trigger='date': 固定时间,执行一次
sched.add_job(my_job, 'date', run_date=datetime(2009, 11, 6, 16, 30, 5), args=['text'])
trigger='cron': 支持crontab方式,执行任务
参数:分钟/小时/天/月/周粒度,也可指定时间范围
year (int|str) – 4-digit year
month (int|str) – month (1-12)
day (int|str) – day of the (1-31)
week (int|str) – ISO week (1-53)
day_of_week (int|str) – number or name of weekday (0-6 or mon,tue,wed,thu,fri,sat,sun)
hour (int|str) – hour (0-23)
minute (int|str) – minute (0-59)
second (int|str) – second (0-59)
start_date (datetime|str) – earliest possible date/time to trigger on (inclusive)
end_date (datetime|str) – latest possible date/time to trigger on (inclusive)
例子
# 星期一到星期五,5点30执行任务job_function,直到2014-05-30 00:00:00
sched.add_job(job_function, 'cron', day_of_week='mon-fri', hour=5, minute=30, end_date='2014-05-30')
# 按照crontab格式执行, 格式为:分钟 小时 天 月 周,*表示所有
# 5月到8月的1号到15号,0点0分执行任务job_function
sched.add_job(job_function, CronTrigger.from_crontab('0 0 1-15 may-aug *'))
执行器
执行器决定如何执行任务;APScheduler支持4种不同执行器,常用的有pool(线程/进程)和gevent(io多路复用,支持高并发),默认为pool中线程池, 不同的执行器可以在调度器的配置中进行配置(见调度器)
任务存储器
任务存储器决定任务的保存方式, 默认存储在内存中(MemoryJobStore),重启后就没有了。APScheduler支持的任务存储器有:
不同的任务存储器可以在调度器的配置中进行配置(见调度器)
调度器
APScheduler支持的调度器方式如下,比较常用的为BlockingScheduler和BackgroundScheduler
从前面的例子,我们可以看到,调度器可以操作任务(并为任务指定触发器、任务存储器和执行器)和监控任务。
scheduler.add_job(job_func, trigger='interval', args=[1], id='1', name='a test job', max_instances=10, jobstore='default', executor='default', seconds=10)
我们来详细看下各个部分
调度器配置:在add_job我们看到jobstore和executor都是default,APScheduler
在定义调度器时可以指定不同的任务存储和执行器,以及初始的参数
from pytz import utc
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.jobstores.mongodb import MongoDBJobStore
from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore
from apscheduler.executors.pool import ThreadPoolExecutor, ProcessPoolExecutor
# 通过dict方式执行不同的jobstores、executors和默认的参数
jobstores = {
'mongo': MongoDBJobStore(),
'default': SQLAlchemyJobStore(url='sqlite:///jobs.sqlite')
}
executors = {
'default': ThreadPoolExecutor(20),
'processpool': ProcessPoolExecutor(5)
}
job_defaults = {
'coalesce': False,
'max_instances': 3
}
# 定义调度器
scheduler = BackgroundScheduler(jobstoresjobstores=jobstores, executorsexecutors=executors, job_defaultsjob_defaults=job_defaults, timezone=utc)
def job_func(job_id):
print('job %s is runed at %s' % (job_id, datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')))
# 添加任务
scheduler.add_job(job_func, trigger='interval', args=[1], id='1', name='a test job', jobstore='default', executor='processpool', seconds=10)
# 启动调度器
scheduler.start()
操作任务:调度器可以增加,删除,暂停,恢复和修改任务。需要注意的是这里的操作只是对未执行的任务起作用,已经执行和正在执行的任务不受这些操作的影响。
add_job
scheduler.add_job(job_func, trigger='interval', args=[1], id='1', name='a test job', max_instances=10, jobstore='default', executor='default', seconds=10)
remove_job: 通过任务唯一的id,删除的时候对应的任务存储器里记录也会删除
scheduler.add_job(myfunc, 'interval', minutes=2, id='my_job_id')
scheduler.remove_job('my_job_id')
Pausing and resuming jobs:暂停和重启任务
scheduler.add_job(myfunc, 'interval', minutes=2, id='my_job_id')
scheduler.pause_job('my_job_id')
scheduler.resume_job('my_job_id')
Modifying jobs:修改任务的配置
job = scheduler.add_job(myfunc, 'interval', minutes=2, id='my_job_id', max_instances=10)
# 修改任务的属性
job.modify(max_instances=6, name='Alternate name')
# 修改任务的触发器
scheduler.reschedule_job('my_job_id', trigger='cron', minute='*/5')
监控任务事件类型,比较常用的类型有:
scheduler.add_listener(job_exception_listener, EVENT_JOB_EXECUTED | EVENT_JOB_ERROR)
总结
到此这篇关于Python任务调度利器之APScheduler详解的文章就介绍到这了,更多相关python任务调度 APScheduler内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!