当前位置:首页 » python教程 » 正文

TensorFlow2.1.0安装过程中setuptools、wrapt等相关错误指南

看: 1806次  时间:2020-07-22  分类 : python教程

笔者remove TensorFlow总共四次。 reinstall anaconda 三次。

我就是用这个教程安装的

因为直接用 pip install安装太慢了

所以在官网CUDA 和cuDNN+清华镜像的TensorFlow来安装比较快。

总结我的几个问题。

一、安装错误

· 在这里插入图片描述

(1)

tensorboard 1.14.0 has requirement setuptools>=41.0.0, but you'll have setuptools 40.6.3

显然我们需要升级 setuptools的版本

我们在cmd中使用下列命令行来安装

python -m pip install -U pip setuptools

非常不幸的是

又出现另一个错误:

ERROR: twisted 18.7.0 requires PyHamcrest>=1.9.0, which is not installed

(笔者因为已经找TensorFlow包remove了4遍了,已经崩溃了)

为了解决这个问题

在cmd中安装

pip install PyHamcrest

安装完PyHamcrest,在运行一次更新setuptools更新的命令行就可以解决了。

(2)

ERROR: Cannot uninstall ‘wrapt'. It is a distutils installed project and thus we cannot accurately determine which files belong to it which would lead to only a partial uninstall.

运行一下命令行

pip install -U --ignore-installed wrapt enum34 simplejson netaddr

完成安装。

二、测试错误

在测试的过程中,我按照前面那个博主的内容。

使用tf.test.is_gpu_available()

发现是false

这个地方就需要你去看一下错误内容

错误内容要仔细看,笔者显示这个错误的时候并没有标红,需要自己去阅读里面的error

我的错误内容是:

failed call to cuInit: CUDA_ERROR_UNKNOWN

第一,硬件是否支持,是否安装了正确的cuda和与之匹配的cudnn版本吗?

如果你按照本文开头的博文安装是匹配了的。

但是随着日期推迟,TensorFlow会更新,对应的cuda和cudnn版本需要改变。

具体可以参考https://tensorflow.google.cn/install/gpu

现在的要求是:

在这里插入图片描述

首先需要查看https://developer.nvidia.com/cuda-gpus

看一下自己的显卡是否支持CUDA

但是值得注意的是

这个网址列的不全,笔者的显卡没有在表单里面。

当我想放弃的时候,我就在百度搜了

笔者的显卡是支持的,笔者用的是MX150。(我不喜欢玩游戏,所以显卡要求不高)

所以建议百度查看自己的显卡是否支持。

除了硬件,就是检查CUDA和CUDNN,这个按照官方文档指出的版本号安装。

第二、如果排除硬件不支持。出现以上错误很可能是驱动问题。

我们可以先到 http://www.nvidia.com/Download/index.aspx 查询下我们需要的是怎样的驱动,勾选好对应的配置:

在这里插入图片描述 在这里插入图片描述

下载安装,运行GeForce Experience 会自动更新驱动。

在这里插入图片描述

版本号为445.75,与官网显示最新版本号一致。

总结

到此这篇关于TensorFlow2.1.0安装过程中setuptools、wrapt等相关错误指南的文章就介绍到这了,更多相关TensorFlow 安装setuptools、wrapt错误内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!

标签:twisted  

<< 上一篇 下一篇 >>

搜索

推荐资源

  Powered By python教程网   鲁ICP备18013710号
python博客 - 小白学python最友好的网站!