当前位置:首页 » python教程 » 正文

pandas中.loc和.iloc以及.at和.iat的区别说明

看: 950次  时间:2021-05-14  分类 : python教程

显示索引和隐式索引

import pandas as pd
df = pd.DataFrame({'姓名':['张三','李四','王五'],'成绩':[85,59,76]})

传入冒号‘:',表示所有行或者列

显示索引:.loc,第一个参数为 index切片,第二个为 columns列名

df.loc[2] #index为2的记录,这里是王五的成绩。
df.loc[:,'姓名'] #第一个参数为冒号,表示所有行,这里是筛选姓名这列记录。

隐式索引:.iloc(integer_location), 只能传入整数。

df.iloc[:2,:] #张三和李四的成绩,跟列表切片一样,冒号左闭右开。
df.iloc[:,'成绩'] #输入中文,这里就报错了,只能使用整数。

也可以使用at定位到某个元素

语法规则:df.at[index,columns]

df.at[1,'成绩'] #使用索引标签,李四的成绩
df.iat[1,1] #类似于iloc使用隐式索引访问某个元素

补充:pandas快速定位某一列中存在某值的所有行,loc, at, ==对比

如下所示:

goodDiskName2016
from datetime import datetime
from time import time

直接方括号定位相等的列

start = time()
for disk in goodDiskName2016[:100]:
   ____ST4000DM000_2016_good_feature27[ST4000DM000_2016_good_feature27.serial_number==disk][features27[0]]
time()-start

消耗时间

82.93997383117676

直接loc定位相等的

start = time()
for disk in goodDiskName2016[:100]:  ____ST4000DM000_2016_good_feature27.loc[ST4000DM000_2016_good_feature27.serial_number==disk][features27[0]]
time()-start

消耗时间:

82.4887466430664

先将这一列设置为index,然后通过loc查找

b = ST4000DM000_2016_good_feature27.set_index('serial_number')
start = time()
for disk in goodDiskName2016[:100]:
 b.loc[disk][features27[0]]
time()-start

消耗时间:

25.706212759017944

设置为index后用at定位

start = time()
for disk in goodDiskName2016[:100]:
 b.at[disk,features27[0]]
time()-start

消耗时间:

25.67607021331787

以上为个人经验,希望能给大家一个参考,也希望大家多多支持python博客。如有错误或未考虑完全的地方,望不吝赐教。

标签:pandas  

<< 上一篇 下一篇 >>

搜索

推荐资源

  Powered By python教程网   鲁ICP备18013710号
python博客 - 小白学python最友好的网站!