我们以MNIST手写数字识别为例
import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import SGD
# 载入数据
(x_train,y_train),(x_test,y_test) = mnist.load_data()
# (60000,28,28)
print('x_shape:',x_train.shape)
# (60000)
print('y_shape:',y_train.shape)
# (60000,28,28)->(60000,784)
x_train = x_train.reshape(x_train.shape[0],-1)/255.0
x_test = x_test.reshape(x_test.shape[0],-1)/255.0
# 换one hot格式
y_train = np_utils.to_categorical(y_train,num_classes=10)
y_test = np_utils.to_categorical(y_test,num_classes=10)
# 创建模型,输入784个神经元,输出10个神经元
model = Sequential([
Dense(units=10,input_dim=784,bias_initializer='one',activation='softmax')
])
# 定义优化器
sgd = SGD(lr=0.2)
# 定义优化器,loss function,训练过程中计算准确率
model.compile(
optimizer = sgd,
loss = 'mse',
metrics=['accuracy'],
)
# 训练模型
model.fit(x_train,y_train,batch_size=64,epochs=5)
# 评估模型
loss,accuracy = model.evaluate(x_test,y_test)
print('\ntest loss',loss)
print('accuracy',accuracy)
# 保存模型
model.save('model.h5') # HDF5文件,pip install h5py
载入初次训练的模型,再训练
import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import SGD
from keras.models import load_model
# 载入数据
(x_train,y_train),(x_test,y_test) = mnist.load_data()
# (60000,28,28)
print('x_shape:',x_train.shape)
# (60000)
print('y_shape:',y_train.shape)
# (60000,28,28)->(60000,784)
x_train = x_train.reshape(x_train.shape[0],-1)/255.0
x_test = x_test.reshape(x_test.shape[0],-1)/255.0
# 换one hot格式
y_train = np_utils.to_categorical(y_train,num_classes=10)
y_test = np_utils.to_categorical(y_test,num_classes=10)
# 载入模型
model = load_model('model.h5')
# 评估模型
loss,accuracy = model.evaluate(x_test,y_test)
print('\ntest loss',loss)
print('accuracy',accuracy)
# 训练模型
model.fit(x_train,y_train,batch_size=64,epochs=2)
# 评估模型
loss,accuracy = model.evaluate(x_test,y_test)
print('\ntest loss',loss)
print('accuracy',accuracy)
# 保存参数,载入参数
model.save_weights('my_model_weights.h5')
model.load_weights('my_model_weights.h5')
# 保存网络结构,载入网络结构
from keras.models import model_from_json
json_string = model.to_json()
model = model_from_json(json_string)
print(json_string)
这一段落主要是为了解决我们fit、evaluate、predict之前还是之后使用compile。想要弄明白,首先我们要清楚compile在程序中是做什么的?都做了什么?
compile做什么?
compile定义了loss function损失函数、optimizer优化器和metrics度量。它与权重无关,也就是说compile并不会影响权重,不会影响之前训练的问题。
如果我们要训练模型或者评估模型evaluate,则需要compile,因为训练要使用损失函数和优化器,评估要使用度量方法;如果我们要预测,则没有必要compile模型。
是否需要多次编译?
除非我们要更改其中之一:损失函数、优化器 / 学习率、度量
又或者我们加载了尚未编译的模型。或者您的加载/保存方法没有考虑以前的编译。
再次compile的后果?
如果再次编译模型,将会丢失优化器状态.
这意味着您的训练在开始时会受到一点影响,直到调整学习率,动量等为止。但是绝对不会对重量造成损害(除非您的初始学习率如此之大,以至于第一次训练步骤疯狂地更改微调的权重)。
到此这篇关于Keras保存模型并载入模型继续训练的实现的文章就介绍到这了,更多相关Keras保存模型并加载模型内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!
标签:numpy
Powered By python教程网 鲁ICP备18013710号
python博客 - 小白学python最友好的网站!