当前位置:首页 » python教程 » 正文

python实现二分类的卡方分箱示例

看: 1013次  时间:2021-02-04  分类 : python教程

解决的问题:

1、实现了二分类的卡方分箱;

2、实现了最大分组限定停止条件,和最小阈值限定停止条件;

问题,还不太清楚,后续补充。

1、自由度k,如何来确定,卡方阈值的自由度为 分箱数-1,显著性水平可以取10%,5%或1%

算法扩展:

1、卡方分箱除了用阈值来做约束条件,还可以进一步的加入分箱数约束,以及最小箱占比,坏人率约束等。

2、需要实现更多分类的卡方分箱算法;

具体代码如下:

# -*- coding: utf-8 -*-
"""
Created on Wed Nov 28 16:54:58 2018
@author: wolfly_fu
解决的问题:
1、实现了二分类的卡方分箱
2、实现了最大分组限定停止条件,和最小阈值限定停止条件;
问题,
1、自由度k,如何来确定?
算法扩展:
1、卡方分箱除了用阈值来做约束条件,还可以进一步的加入分箱数约束,以及最小箱占比,坏人率约束等。
2、需要实现更多分类的卡方分箱算法
"""

import pandas as pd
import numpy as np
from scipy.stats import chi2

#导入数据
df = pd.read_csv(u'test.csv')

#计算卡方统计量
def cal_chi2(input_df, var_name, Y_name): ##二分类,,计算每个变量值的卡方统计量
  '''
  df = input_df[[var_name, Y_name]]
  var_values = sorted(list(set(df[var_name])))
  Y_values = sorted(list(set(df[Y_name])))
  #用循环的方式填充
  chi2_result = pd.DataFrame(index=var_values, columns=Y_values)  
  for var_value in var_values:
    for Y_value in Y_values:
      chi2_result.loc[var_value][Y_value] = \
      df[(df[var_name]==var_value)&(df[Y_name]==Y_value)][var_name].count()
  '''
  input_df = input_df[[var_name, Y_name]]  #取数据
  all_cnt = input_df[Y_name].count() #样本总数
  all_0_cnt = input_df[input_df[Y_name] == 0].shape[0] # 二分类的样本数量
  all_1_cnt = input_df[input_df[Y_name] == 1].shape[0]
  expect_0_ratio = all_0_cnt * 1.0 / all_cnt #样本分类比例
  expect_1_ratio = all_1_cnt * 1.0 / all_cnt 

  #对变量的每个值计算实际个数,期望个数,卡方统计量 
  var_values = sorted(list(set(input_df[var_name])))
  actual_0_cnt = []    # actual_0 该值,类别为0的数量
  actual_1_cnt = []    # actual_1 该值,类别为1的数量
  actual_all_cnt = []
  expect_0_cnt = []    # expect_0 类别0 的卡方值
  expect_1_cnt = []    # expect_1 类别1 的卡方值 
  chi2_value = []     # chi2_value 该组的卡方值

  for value in var_values:
    actual_0 = input_df[(input_df[var_name]==value)&(input_df[Y_name]==0)].shape[0] #该值,类别为0的数量
    actual_1 = input_df[(input_df[var_name]==value)&(input_df[Y_name]==1)].shape[0]
    actual_all = actual_0 + actual_1 #总数
    expect_0 = actual_all * expect_0_ratio #类别0 的 期望频率
    expect_1 = actual_all * expect_1_ratio

    chi2_0 = (expect_0 - actual_0)**2 / expect_0 #类别0 的卡方值
    chi2_1 = (expect_1 - actual_1)**2 / expect_1

    actual_0_cnt.append(actual_0) #样本为0的,该值的数量
    actual_1_cnt.append(actual_1)

    actual_all_cnt.append(actual_all) #改组的总样本数
    expect_0_cnt.append(expect_0) #类别0 的 期望频率
    expect_1_cnt.append(expect_1)

    chi2_value.append(chi2_0 + chi2_1) #改变量值的卡方值

  chi2_result = pd.DataFrame({'actual_0':actual_0_cnt, 'actual_1':actual_1_cnt, 'expect_0':expect_0_cnt, \
                'expect_1':expect_1_cnt, 'chi2_value':chi2_value, var_name+'_start':var_values, \
                var_name+'_end':var_values}, \
                columns=[var_name+'_start', var_name+'_end', 'actual_0', 'actual_1', 'expect_0', 'expect_1', 'chi2_value'])

  return chi2_result, var_name 

#定义合并区间的方法
def merge_area(chi2_result, var_name, idx, merge_idx):
  #按照idx和merge_idx执行合并
  chi2_result.ix[idx, 'actual_0'] = chi2_result.ix[idx, 'actual_0'] + chi2_result.ix[merge_idx, 'actual_0']
  chi2_result.ix[idx, 'actual_1'] = chi2_result.ix[idx, 'actual_1'] + chi2_result.ix[merge_idx, 'actual_1']
  chi2_result.ix[idx, 'expect_0'] = chi2_result.ix[idx, 'expect_0'] + chi2_result.ix[merge_idx, 'expect_0']  
  chi2_result.ix[idx, 'expect_1'] = chi2_result.ix[idx, 'expect_1'] + chi2_result.ix[merge_idx, 'expect_1']  
  chi2_0 = (chi2_result.ix[idx, 'expect_0'] - chi2_result.ix[idx, 'actual_0'])**2 / chi2_result.ix[idx, 'expect_0']
  chi2_1 = (chi2_result.ix[idx, 'expect_1'] - chi2_result.ix[idx, 'actual_1'])**2 / chi2_result.ix[idx, 'expect_1']

  chi2_result.ix[idx, 'chi2_value'] = chi2_0 + chi2_1   #计算卡方值

  #调整每个区间的起始值
  if idx < merge_idx:
    chi2_result.ix[idx, var_name+'_end'] = chi2_result.ix[merge_idx, var_name+'_end'] #向后扩大范围
  else:
    chi2_result.ix[idx, var_name+'_start'] = chi2_result.ix[merge_idx, var_name+'_start'] ##,向前扩大范围

  chi2_result = chi2_result.drop([merge_idx]) #删掉行
  chi2_result = chi2_result.reset_index(drop=True)

  return chi2_result

#自动进行分箱,使用最大区间限制
def chiMerge_maxInterval(chi2_result, var_name, max_interval=5): #最大分箱数 为 5 
  groups = chi2_result.shape[0] #各组的卡方值,数量
  while groups > max_interval:
    min_idx = chi2_result[chi2_result['chi2_value']==chi2_result['chi2_value'].min()].index.tolist()[0] #寻找最小的卡方值
    if min_idx == 0:
      chi2_result = merge_area(chi2_result, var_name, min_idx, min_idx+1) #合并1和2组
    elif min_idx == groups-1:  
      chi2_result = merge_area(chi2_result, var_name, min_idx, min_idx-1)

    else: #寻找左右两边更小的卡方组
      if chi2_result.loc[min_idx-1, 'chi2_value'] > chi2_result.loc[min_idx+1, 'chi2_value']:
        chi2_result = merge_area(chi2_result, var_name, min_idx, min_idx+1)
      else:
        chi2_result = merge_area(chi2_result, var_name, min_idx, min_idx-1)
    groups = chi2_result.shape[0]

  return chi2_result


def chiMerge_minChiSquare(chi2_result, var_name): #(chi_result, maxInterval=5):
  '''
  卡方分箱合并--卡方阈值法,,同时限制,最大组为6组,,可以去掉
  '''
  threshold = get_chiSquare_distribution(4, 0.1)
  min_chiSquare = chi2_result['chi2_value'].min()
  #min_chiSquare = chi_result['chi_square'].min()
  group_cnt = len(chi2_result)
  # 如果变量区间的最小卡方值小于阈值,则继续合并直到最小值大于等于阈值
  while(min_chiSquare < threshold and group_cnt > 6):
    min_idx = chi2_result[chi2_result['chi2_value']==chi2_result['chi2_value'].min()].index.tolist()[0] #寻找最小的卡方值
    #min_index = chi_result[chi_result['chi_square']==chi_result['chi_square'].min()].index.tolist()[0]
    # 如果分箱区间在最前,则向下合并
    if min_idx == 0:
      chi2_result = merge_area(chi2_result, var_name, min_idx, min_idx+1) #合并1和2组
    elif min_idx == group_cnt -1:  
      chi2_result = merge_area(chi2_result, var_name, min_idx, min_idx-1)

    else: #寻找左右两边更小的卡方组
      if chi2_result.loc[min_idx-1, 'chi2_value'] > chi2_result.loc[min_idx+1, 'chi2_value']:
        chi2_result = merge_area(chi2_result, var_name, min_idx, min_idx+1)
      else:
        chi2_result = merge_area(chi2_result, var_name, min_idx, min_idx-1)

    min_chiSquare = chi2_result['chi2_value'].min()
    group_cnt = len(chi2_result)

  return chi2_result

#分箱主体部分包括两种分箱方法的主体函数,其中merge_chiSquare()是对区间进行合并,
#get_chiSquare_distribution()是根据自由度和置信度得到卡方阈值。我在这里设置的是自由度为4
#,置信度为10%。两个自定义函数如下

def get_chiSquare_distribution(dfree=4, cf=0.1):
  '''
  根据自由度和置信度得到卡方分布和阈值
  dfree:自由度k= (行数-1)*(列数-1),默认为4   #问题,自由度k,如何来确定?
  cf:显著性水平,默认10%
  '''
  percents = [ 0.95, 0.90, 0.5,0.1, 0.05, 0.025, 0.01, 0.005]
  df = pd.DataFrame(np.array([chi2.isf(percents, df=i) for i in range(1, 30)]))
  df.columns = percents
  df.index = df.index+1
  # 显示小数点后面数字
  pd.set_option('precision', 3)
  return df.loc[dfree, cf]

以上这篇python实现二分类的卡方分箱示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

标签:pandas  numpy  

<< 上一篇 下一篇 >>

搜索

推荐资源

  Powered By python教程网   鲁ICP备18013710号
python博客 - 小白学python最友好的网站!