这篇文章主要介绍了Python二次规划和线性规划使用实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
对于二次规划(quadratic programming)和线性规划(Linear Programming)问题
MATLAB里是有quadprog函数可以直接用来解决二次规划问题的,linprog函数来解决线性规划问题。Python中也有很多库用来解决,对于二次规划有CVXOPT, CVXPY, Gurobi, MOSEK, qpOASES 和 quadprog; 对于线性规划有Gurobi,PuLP, cvxopt。
目前发现quadprog进行pip install quadprog不成功,而cvxopt成功了,就先说cvxopt的使用。
安装
conda install -c conda-forge cvxopt
安装非常顺利
使用
cvxopt有自己的matrix格式,因此使用前得包装一下
对于二次规划:
def cvxopt_solve_qp(P, q, G=None, h=None, A=None, b=None):
P = .5 * (P + P.T) # make sure P is symmetric
args = [cvxopt.matrix(P), cvxopt.matrix(q)]
if G is not None:
args.extend([cvxopt.matrix(G), cvxopt.matrix(h)])
if A is not None:
args.extend([cvxopt.matrix(A), cvxopt.matrix(b)])
sol = cvxopt.solvers.qp(*args)
if 'optimal' not in sol['status']:
return None
return np.array(sol['x']).reshape((P.shape[1],))
对于线性规划:
def cvxopt_solve_lp(f, A, b):
#args = [cvxopt.matrix(f), cvxopt.matrix(A), cvxopt.matrix(b)]
#cvxopt.solvers.lp(*args)
sol = cvxopt.solvers.lp(cvxopt.matrix(f), cvxopt.matrix(A), cvxopt.matrix(b))
return np.array(sol['x']).reshape((f.shape[0],))
参考:
Quadratic Programming in Python
Linear Programming in Python with CVXOPT
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持python博客。
Powered By python教程网 鲁ICP备18013710号
python博客 - 小白学python最友好的网站!