我就废话不多说,直接上代码吧!
# -*- coding: utf-8 -*-
import cv2
import numpy as np
from find_obj import filter_matches,explore_match
from matplotlib import pyplot as plt
def getSift():
'''
得到并查看sift特征
'''
img_path1 = '../../data/home.jpg'
#读取图像
img = cv2.imread(img_path1)
#转换为灰度图
gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
#创建sift的类
sift = cv2.SIFT()
#在图像中找到关键点 也可以一步计算#kp, des = sift.detectAndCompute
kp = sift.detect(gray,None)
print type(kp),type(kp[0])
#Keypoint数据类型分析 http://www.cnblogs.com/cj695/p/4041399.html
print kp[0].pt
#计算每个点的sift
des = sift.compute(gray,kp)
print type(kp),type(des)
#des[0]为关键点的list,des[1]为特征向量的矩阵
print type(des[0]), type(des[1])
print des[0],des[1]
#可以看出共有885个sift特征,每个特征为128维
print des[1].shape
#在灰度图中画出这些点
img=cv2.drawKeypoints(gray,kp)
#cv2.imwrite('sift_keypoints.jpg',img)
plt.imshow(img),plt.show()
def matchSift():
'''
匹配sift特征
'''
img1 = cv2.imread('../../data/box.png', 0) # queryImage
img2 = cv2.imread('../../data/box_in_scene.png', 0) # trainImage
sift = cv2.SIFT()
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)
# 蛮力匹配算法,有两个参数,距离度量(L2(default),L1),是否交叉匹配(默认false)
bf = cv2.BFMatcher()
#返回k个最佳匹配
matches = bf.knnMatch(des1, des2, k=2)
# cv2.drawMatchesKnn expects list of lists as matches.
#opencv2.4.13没有drawMatchesKnn函数,需要将opencv2.4.13\sources\samples\python2下的common.py和find_obj文件放入当前目录,并导入
p1, p2, kp_pairs = filter_matches(kp1, kp2, matches)
explore_match('find_obj', img1, img2, kp_pairs) # cv2 shows image
cv2.waitKey()
cv2.destroyAllWindows()
def matchSift3():
'''
匹配sift特征
'''
img1 = cv2.imread('../../data/box.png', 0) # queryImage
img2 = cv2.imread('../../data/box_in_scene.png', 0) # trainImage
sift = cv2.SIFT()
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)
# 蛮力匹配算法,有两个参数,距离度量(L2(default),L1),是否交叉匹配(默认false)
bf = cv2.BFMatcher()
#返回k个最佳匹配
matches = bf.knnMatch(des1, des2, k=2)
# cv2.drawMatchesKnn expects list of lists as matches.
#opencv3.0有drawMatchesKnn函数
# Apply ratio test
# 比值测试,首先获取与A 距离最近的点B(最近)和C(次近),只有当B/C
# 小于阈值时(0.75)才被认为是匹配,因为假设匹配是一一对应的,真正的匹配的理想距离为0
good = []
for m, n in matches:
if m.distance < 0.75 * n.distance:
good.append([m])
img3 = cv2.drawMatchesKnn(img1, kp1, img2, kp2, good[:10], None, flags=2)
cv2.drawm
plt.imshow(img3), plt.show()
matchSift()
以上这篇opencv-python 提取sift特征并匹配的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。
标签:numpy matplotlib
Powered By python教程网 鲁ICP备18013710号
python博客 - 小白学python最友好的网站!