本文介绍了python 比较2张图片的相似度的方法示例,分享给大家,具体如下:
#!/usr/bin/python
# -*- coding: UTF-8 -*-
import cv2
import numpy as np
#均值哈希算法
def aHash(img):
#缩放为8*8
img=cv2.resize(img,(8,8),interpolation=cv2.INTER_CUBIC)
#转换为灰度图
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
#s为像素和初值为0,hash_str为hash值初值为''
s=0
hash_str=''
#遍历累加求像素和
for i in range(8):
for j in range(8):
s=s+gray[i,j]
#求平均灰度
avg=s/64
#灰度大于平均值为1相反为0生成图片的hash值
for i in range(8):
for j in range(8):
if gray[i,j]>avg:
hash_str=hash_str+'1'
else:
hash_str=hash_str+'0'
return hash_str
#差值感知算法
def dHash(img):
#缩放8*8
img=cv2.resize(img,(9,8),interpolation=cv2.INTER_CUBIC)
#转换灰度图
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
hash_str=''
#每行前一个像素大于后一个像素为1,相反为0,生成哈希
for i in range(8):
for j in range(8):
if gray[i,j]>gray[i,j+1]:
hash_str=hash_str+'1'
else:
hash_str=hash_str+'0'
return hash_str
#Hash值对比
def cmpHash(hash1,hash2):
n=0
#hash长度不同则返回-1代表传参出错
if len(hash1)!=len(hash2):
return -1
#遍历判断
for i in range(len(hash1)):
#不相等则n计数+1,n最终为相似度
if hash1[i]!=hash2[i]:
n=n+1
return n
img1=cv2.imread('A.png')
img2=cv2.imread('B.png')
hash1= aHash(img1)
hash2= aHash(img2)
print(hash1)
print(hash2)
n=cmpHash(hash1,hash2)
print '均值哈希算法相似度:'+ str(n)
hash1= dHash(img1)
hash2= dHash(img2)
print(hash1)
print(hash2)
n=cmpHash(hash1,hash2)
print '差值哈希算法相似度:'+ str(n)
讲解
相似图像搜索的哈希算法有三种:
步骤
缩放:图片缩放为8*8,保留结构,出去细节。
灰度化:转换为256阶灰度图。
求平均值:计算灰度图所有像素的平均值。
比较:像素值大于平均值记作1,相反记作0,总共64位。
生成hash:将上述步骤生成的1和0按顺序组合起来既是图片的指纹(hash)。顺序不固定。但是比较时候必须是相同的顺序。
对比指纹:将两幅图的指纹对比,计算汉明距离,即两个64位的hash值有多少位是不一样的,不相同位数越少,图片越相似。
代码实现:
#均值哈希算法
def aHash(img):
#缩放为8*8
img=cv2.resize(img,(8,8),interpolation=cv2.INTER_CUBIC)
#转换为灰度图
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
#s为像素和初值为0,hash_str为hash值初值为''
s=0
hash_str=''
#遍历累加求像素和
for i in range(8):
for j in range(8):
s=s+gray[i,j]
#求平均灰度
avg=s/64
#灰度大于平均值为1相反为0生成图片的hash值
for i in range(8):
for j in range(8):
if gray[i,j]>avg:
hash_str=hash_str+'1'
else:
hash_str=hash_str+'0'
return hash_str
差值哈希算法
差值哈希算法前期和后期基本相同,只有中间比较hash有变化。
步骤
1. 缩放:图片缩放为8*9,保留结构,出去细节。
2. 灰度化:转换为256阶灰度图。
3. 求平均值:计算灰度图所有像素的平均值。
4. 比较:像素值大于后一个像素值记作1,相反记作0。本行不与下一行对比,每行9个像素,八个差值,有8行,总共64位
5. 生成hash:将上述步骤生成的1和0按顺序组合起来既是图片的指纹(hash)。顺序不固定。但是比较时候必须是相同的顺序。
6. 对比指纹:将两幅图的指纹对比,计算汉明距离,即两个64位的hash值有多少位是不一样的,不相同位数越少,图片越相似。
#差值感知算法
def dHash(img):
#缩放8*8
img=cv2.resize(img,(9,8),interpolation=cv2.INTER_CUBIC)
#转换灰度图
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
hash_str=''
#每行前一个像素大于后一个像素为1,相反为0,生成哈希
for i in range(8):
for j in range(8):
if gray[i,j]>gray[i,j+1]:
hash_str=hash_str+'1'
else:
hash_str=hash_str+'0'
return hash_str
感知哈希算法
感知哈希算法可以参考
相似性︱python+opencv实现pHash算法+hamming距离(simhash)(三)
讲的很详细了。
Hash值对比
由于返回值为str字符串,所以直接遍历字符串进行比对。
#Hash值对比
def cmpHash(hash1,hash2):
n=0
#hash长度不同则返回-1代表传参出错
if len(hash1)!=len(hash2):
return -1
#遍历判断
for i in range(len(hash1)):
#不相等则n计数+1,n最终为相似度
if hash1[i]!=hash2[i]:
n=n+1
return n
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持python博客。
标签:numpy
Powered By python教程网 鲁ICP备18013710号
python博客 - 小白学python最友好的网站!