当前位置:首页 » python教程 » 正文

Python中实现一行拆多行和多行并一行的示例代码

看: 910次  时间:2020-09-28  分类 : python教程

粉丝提问

今天粉丝提了下面这样一个问题,其中一个是"一行拆多行",另外一个是"多行并一行",貌似群友用power query已经解决了。但是基于Python怎么做呢?接着往下看。

一行拆多行

上面这个问题我会提供两个思路,供大家选择,当然肯定是越简单得越好。每一种方法中都有一些好用的技巧,希望大家能够好好学习。

1)方法一

下方代码中有很多重要的知识点,需要我们下去好好学习一下,我这里只提供解体思路,关于每个知识点怎么用,希望大家下去自行研究学习。

  • Pandas.melt()函数的用法;
  • Series.str.split("/",expand=True)中,expand=True参数的用法;
  • Series.sort_values()对文本进行排序;
  • Python中enumerate()函数的用法;
import pandas as pd
# 读取数据
df = pd.read_excel("test1.xlsx",sheet_name="Sheet1")
# 将一列炸裂成多列
df[["类型1","类型2","类型3"]] = df["电影类型"].str.split("/",expand=True)
# 选取想要的列
df_final = df[["电影名","类型1","类型2","类型3"]]
# 将行专列
df_final = df_final.melt(id_vars=["电影名"],value_name="类型")
# 对“电影名”字段进行排序
df_final = df_final[["电影名","类型"]]
df_final.sort_values(by="电影名",inplace=True)
# 删除“类型==None”的行
for index,value in enumerate(df_final["类型"]):
  if value == None:
    df_final.drop(df_final.index[index],inplace=True)
df_final

结果如下:

2)方法二

上述方法确实感觉复杂了,但是没办法,我之前的Pandas版本只有0.23.4,因此无法用explode()方法,进行炸裂操作。在pandas0.25版本的时候, DataFrame中才新增了一个explode方法, 专门用来将一行变多行。

Pandas.explode()函数的用法;

import pandas as pd
# 读取数据
df = pd.read_excel("test1.xlsx",sheet_name="Sheet1")
# 将一行拆分成列表形式,注意:这里不需要使用expand=True参数
df["type"] = df["电影类型"].str.split("/")
# 直接炸裂指定列
df.explode("type")

结果如下:

多行并一行

这里没有使用什么特别的知识,好好理解Pandas中分组聚合应用某个函数,即可轻松解决这个问题。

import pandas as pd
# 读取数据
df = pd.read_excel("test1.xlsx",sheet_name="Sheet2")
# 分组聚合,应用某个函数
def func(df):
  return ','.join(df.values)
df = df.groupby(by='电影名').agg(func).reset_index()
df

结果如下:

到此这篇关于Python中实现一行拆多行和多行并一行的示例代码的文章就介绍到这了,更多相关Python 一行拆多行和多行并一行内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!

标签:pandas  

<< 上一篇 下一篇 >>

搜索

推荐资源

  Powered By python教程网   鲁ICP备18013710号
python博客 - 小白学python最友好的网站!