本文实例讲述了Python爬虫爬取、解析数据操作。分享给大家供大家参考,具体如下:
爬虫 当当网 http://search.dangdang.com/?key=python&act=input&page_index=1
引用相关库
import requests
import re
import csv
import pymysql
from bs4 import BeautifulSoup
from lxml import etree
import lxml
from lxml import html
类代码实现部分
class DDSpider(object):
#对象属性 参数 关键字 页数
def __init__(self,key='python',page=1):
self.url = 'http://search.dangdang.com/?key='+key+'&act=input&page_index={}'
self.page = page
self.headers = {'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/53.0.2785.116 Safari/537.36'}
#私有对象方法
def __my_url(self):
my_url = []
if self.page < 1:
my_page = 2
else:
my_page = self.page+1
#循环遍历每一页
for i in range(1,my_page):
my_url.append(self.url.format(i))
return my_url
#私有对象方法 请求数据
def __my_request(self,url,parser_type):
#循环遍历每一页
response = requests.get(url=url,headers=self.headers)
if response.status_code == 200:
return self.__my_parser(response.text,parser_type)
else:
return None
#私有对象方法 解析数据 1 利用正则 2 bs4 3 xpath
def __my_parser(self,html,my_type=1):
if my_type == 1:
pattern = re.compile('<p.*?class=[\'\"]name[\'\"].*?name=[\'\"]title[\'\"].*?<a.*?title=[\'\"](.*?)[\'\"].*?href=[\'\"](.*?)[\'\"].*?name=[\'\"]itemlist-title[\'\"].*?<p class=[\'\"]detail[\'\"].*?>(.*?)</p>.*?<span.*?class=[\'\"]search_now_price[\'\"].*?>(.*?)</span>.*?<p.*?class=[\'\"]search_book_author[\'\"].*?><span>.*?<a.*?name=[\'\"]itemlist-author[\'\"].*?title=[\'\"](.*?)[\'\"].*?</span>',re.S)
result = re.findall(pattern,html)
elif my_type == 2:
soup = BeautifulSoup(html,'lxml')
result = []
title_url = soup.find_all('a',attrs={'name':'itemlist-title'})
for i in range(0,len(title_url)):
title = soup.find_all('a',attrs={'name':'itemlist-title'})[i].attrs['title']
url = soup.find_all('a',attrs={'name':'itemlist-title'})[i].attrs['href']
price = soup.find_all('span',attrs={'class':'search_now_price'})[i].get_text()
author = soup.find_all('a',attrs={'name':'itemlist-author'})[i].attrs['title']
desc = soup.find_all('p',attrs={'class':'detail'})[i].get_text()
my_tuple = (title,url,desc,price,author)
result.append(my_tuple)
else:
html = etree.HTML(html)
li_all = html.xpath('//div[@id="search_nature_rg"]/ul/li')
result = []
for i in range(len(li_all)):
title = html.xpath('//div[@id="search_nature_rg"]/ul/li[{}]/p[@class="name"]/a/@title'.format(i+1))
url = html.xpath('//div[@id="search_nature_rg"]/ul/li[{}]/p[@class="name"]/a/@href'.format(i+1))
price = html.xpath('//div[@id="search_nature_rg"]/ul/li[{}]//span[@class="search_now_price"]/text()'.format(i+1))
author_num = html.xpath('//div[@id="search_nature_rg"]/ul/li[{}]/p[@class="search_book_author"]/span[1]/a'.format(i+1))
if len(author_num) != 0:
#有作者 a标签
author = html.xpath('//div[@id="search_nature_rg"]/ul/li[{}]/p[@class="search_book_author"]/span[1]/a[1]/@title'.format(i+1))
else:
#没有作者 a标签
author = html.xpath('//div[@id="search_nature_rg"]/ul/li[{}]/p[@class="search_book_author"]/span[1]/text()'.format(i+1))
desc = html.xpath('//div[@id="search_nature_rg"]/ul/li[{}]/p[@class="detail"]/text()'.format(i+1))
my_tuple = (" ".join(title)," ".join(url)," ".join(desc)," ".join(price)," ".join(author))
result.append(my_tuple)
return result
#私有对象方法 存储数据 1 txt 2 csv 3 mysql
def __my_save(self,data,save_type=1):
#循环遍历
for value in data:
if save_type == 1:
with open('ddw.txt','a+',encoding="utf-8") as f:
f.write('【名称】:{}【作者】:{}【价格】:{}【简介】:{}【链接】:{}'.format(value[0],value[4],value[3],value[2],value[1]))
elif save_type == 2:
with open('ddw.csv','a+',newline='',encoding='utf-8-sig') as f:
writer = csv.writer(f)
#转化为列表 存储
writer.writerow(list(value))
else:
conn = pymysql.connect(host='127.0.0.1',user='root',passwd='',db='',port=3306,charset='utf8')
cursor = conn.cursor()
sql = ''
cursor.execute(sql)
conn.commit()
cursor.close()
conn.close()
#公有对象方法 执行所有爬虫操作
def my_run(self,parser_type=1,save_type=1):
my_url = self.__my_url()
for value in my_url:
result = self.__my_request(value,parser_type)
self.__my_save(result,save_type)
调用爬虫类实现数据获取
if __name__ == '__main__':
#实例化创建对象
dd = DDSpider('python',0)
#参数 解析方式 my_run(parser_type,save_type)
# parser_type 1 利用正则 2 bs4 3 xpath
#存储方式 save_type 1 txt 2 csv 3 mysql
dd.my_run(2,1)
==总结一下: ==
1. 总体感觉正则表达式更简便一些 , 代码也会更简便 , 但是正则部分相对复杂和困难
2. bs4和xpath 需要对html代码有一定了解 , 取每条数据多个值时相对较繁琐
希望本文所述对大家Python程序设计有所帮助。
标签:requests
Powered By python教程网 鲁ICP备18013710号
python博客 - 小白学python最友好的网站!