一、爬取数据
话不多说了,直接上代码( copy即可用 )
import requests
import pandas as pd
class SpiderRumor(object):
def __init__(self):
self.url = "https://vp.fact.qq.com/loadmore?artnum=0&page=%s"
self.header = {
"User-Agent": "Mozilla/5.0 (iPhone; CPU iPhone OS 11_0 like Mac OS X) AppleWebKit/604.1.38 (KHTML, like Gecko) Version/11.0 Mobile/15A372 Safari/604.1",
}
def spider_run(self):
df_all = list()
for url in [self.url % i for i in range(30)]:
data_list = requests.get(url, headers=self.header).json()["content"]
temp_data = [[df["title"], df["date"], df["result"], df["explain"], df["tag"]] for df in data_list]
df_all.extend(temp_data)
print(temp_data[0])
pd.DataFrame(df_all, columns=["title", "date", "result", "explain", "tag"]).to_csv("冠状病毒谣言数据.csv", encoding="utf_8_sig")
if __name__ == '__main__':
spider = SpiderRumor()
spider.spider_run()
爬虫过程
二、数据分析
数据展示
每日谣言数量
由图可得:1月24日和1月25日是谣言的高峰期,让我们来看看这两天的数据:
由上图得知 一月二十四号和二十号传播的 29 条谣言中 96.55% 都是假的
谣言是否属实占比
从1月18日到今日截止2月14日共发现了300条谣言,右上图可得:76.33% 都是假的,只要 7.00% 是属实的,其中 14.33% 的谣言属于 伪科学 而且 还有 8.00% 属于尚无定论凭空捏造出的,需要多注意⚠️
谣言的关键字展示
下面介绍 matplotlib 绘制饼图的代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# Windows系统设置中文字体
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False
data = pd.read_csv("/冠状病毒谣言数据.csv"")
labels = data["explain"].value_counts().index.tolist()
sizes = data["explain"].value_counts().values.tolist()
colors = ['lightgreen', 'gold', 'lightskyblue', 'lightcoral']
plt.figure(figsize=(15,8))
plt.pie(sizes, labels=labels,
colors=colors, autopct='%1.1f%%', shadow=True, startangle=50) # shadow=True 表示阴影
plt.axis('equal') # 使图居中
plt.show()
绘制谣言关键字分布图(观察 tag 这个字段)
由于 tag 这个字段内容是列表,我们取出来后是列表嵌套列表:[[a, b], [b, c], [c, d]] 我们要使用一行列表生成式快速的将所以的关键字取出来 [j for i in a for j in i]
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# Windows系统设置中文字体
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False
data = pd.read_csv("/冠状病毒谣言数据.csv"")
df = pd.Series([j for i in [eval(i) for i in data["tag"].tolist()] for j in i]).value_counts()[:20]
X = df.index.tolist()
y = df.values.tolist()
plt.figure(figsize=(15, 8)) # 设置画布
plt.bar(X, y, color="orange")
plt.tight_layout()
# plt.grid(axis="y")
plt.grid(ls='-.')
plt.show()
总结
以上所述是小编给大家介绍的Python爬取新型冠状病毒“谣言”新闻进行数据分析,希望对大家有所帮助!
Powered By python教程网 鲁ICP备18013710号
python博客 - 小白学python最友好的网站!