常用目标检测模型基本都是读取的PASCAL VOC格式的标签,下面代码用于生成VOC格式的代码,根据需要修改即可:
from lxml import etree, objectify
def gen_txt(filename, h, w, c):
E = objectify.ElementMaker(annotate=False)
anno_tree = E.annotation(
E.folder('VOC_OPEN_IMAGE'),
E.filename(filename),
E.source(
E.database('The VOC2007 Database'),
E.annotation('PASCAL VOC2007'),
E.image('flickr'),
E.flickrid("341012865")
),
E.size(
E.width(w),
E.height(h),
E.depth(c)
),
E.segmented(0),
E.object(
E.name('1'),
E.pose('left'),
E.truncated('1'),
E.difficult('0'),
E.bndbox(
E.xmin('0'),
E.ymin('0'),
E.xmax('0'),
E.ymax('0')
)
),
)
etree.ElementTree(anno_tree).write('ann/'+filename[:-4]+".xml", pretty_print=True)
补充知识: python对PASCAL VOC标注数据进行统计
用于统计训练数据中的类别,以及所有目标的个数:
# coding:utf-8
import xml.etree.cElementTree as ET
import os
from collections import Counter
import shutil
# Counter({'towCounter({'tower': 3074, 'windpower': 2014, 'thermalpower': 689, 'hydropower': 261, 'transformer': 225})
# total_num: 6263
def count(pathdir,despath):
category = []
path = pathdir + '/XML/'
for index,xml in enumerate(os.listdir(path)):
# print(str(index) + ' xml: '+ xml)
root = ET.parse(os.path.join(path, xml))
objects = root.findall('object')
# ==================select images which has a special object=============
for obj in objects:
obj_label = obj.find('name').text
if obj_label == 'transformer':
print(xml)
imgfile = pathdir + 'JPEG/' + xml.replace('xml', 'jpg')
img_despath = despath + xml.replace('xml', 'jpg')
# if not os.path.exists(img_despath):
shutil.copyfile(imgfile, img_despath)
# ==================select images which has a special object=============
category += [ob.find('name').text for ob in objects]
print(Counter(category))
total_num = sum([value for key, value in Counter(category).items()])
print('total_num:',total_num)
if __name__ == '__main__':
# pathdirs = list(set(os.listdir('./')) ^ set(['tools','count.py']))
# print(pathdirs)
# for pathdir in pathdirs:
pathdir = '/summer/Desktop/power_traindata/'
despath = '/transformer/'
count(pathdir,despath)
以上这篇Python 生成VOC格式的标签实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。
Powered By python教程网 鲁ICP备18013710号
python博客 - 小白学python最友好的网站!