当前位置:首页 » python教程 » 正文

详解基于Jupyter notebooks采用sklearn库实现多元回归方程编程

看: 983次  时间:2020-08-01  分类 : python教程

一、导入excel文件和相关库

import pandas;
import matplotlib;
from pandas.tools.plotting import scatter_matrix;

data = pandas.read_csv("D:\\面积距离车站.csv",engine='python',encoding='utf-8')

显示文件大小

data.shape

data

二.绘制多个变量两两之间的散点图:scatter_matrix()方法

#绘制多个变量两两之间的散点图:scatter_matrix()方法
font = {
  'family' : 'SimHei'
}

matplotlib.rc('font', **font)
scatter_matrix(
  data[["area","distance", "money"]], 
  figsize=(10, 10), diagonal='kde'
)  #diagonal参数表示变量与变量本身之间的绘图方式,kde代表直方图
#求相关系数矩阵
data[["area", "distance", "money"]].corr()

x = data[["area", "distance"]]
y = data[["money"]]

三、导入sklearn

from sklearn.linear_model import LinearRegression

#建模
lrModel = LinearRegression()

#训练模型
lrModel.fit(x, y)

#评分
R2=lrModel.score(x, y)
print("R的平方:",R2)

#预测
lrModel.predict([[10, 110],[20, 110]])

#查看参数
lrModel.coef_

#查看截距
lrModel.intercept_

结果如下:


回归方程为:y=41.51x1-0.34x2+65.32

四、python全部代码

import pandas;
import matplotlib;
from pandas.tools.plotting import scatter_matrix;

data.shape

#绘制多个变量两两之间的散点图:scatter_matrix()方法
font = {
  'family' : 'SimHei'
}

matplotlib.rc('font', **font)
scatter_matrix(
  data[["area","distance", "money"]], 
  figsize=(10, 10), diagonal='kde'
)  #diagonal参数表示变量与变量本身之间的绘图方式,kde代表直方图
#求相关系数矩阵
data[["area", "distance", "money"]].corr()

x = data[["area", "distance"]]
y = data[["money"]]

from sklearn.linear_model import LinearRegression

#建模
lrModel = LinearRegression()

#训练模型
lrModel.fit(x, y)

#评分
R2=lrModel.score(x, y)
print("R的平方:",R2)

#预测
lrModel.predict([[10, 110],[20, 110]])

#查看参数
lrModel.coef_

#查看截距
lrModel.intercept_

到此这篇关于详解基于Jupyter notebooks采用sklearn库实现多元回归方程编程的文章就介绍到这了,更多相关Jupyter notebooks sklearn多元回归方程内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!

标签:pandas  matplotlib  

<< 上一篇 下一篇 >>

搜索

推荐资源

  Powered By python教程网   鲁ICP备18013710号
python博客 - 小白学python最友好的网站!