本文实例为大家分享了python实现梯度下降和逻辑回归的具体代码,供大家参考,具体内容如下
import numpy as np
import pandas as pd
import os
data = pd.read_csv("iris.csv") # 这里的iris数据已做过处理
m, n = data.shape
dataMatIn = np.ones((m, n))
dataMatIn[:, :-1] = data.ix[:, :-1]
classLabels = data.ix[:, -1]
# sigmoid函数和初始化数据
def sigmoid(z):
return 1 / (1 + np.exp(-z))
# 随机梯度下降
def Stocgrad_descent(dataMatIn, classLabels):
dataMatrix = np.mat(dataMatIn) # 训练集
labelMat = np.mat(classLabels).transpose() # y值
m, n = np.shape(dataMatrix) # m:dataMatrix的行数,n:dataMatrix的列数
weights = np.ones((n, 1)) # 初始化回归系数(n, 1)
alpha = 0.001 # 步长
maxCycle = 500 # 最大循环次数
epsilon = 0.001
error = np.zeros((n,1))
for i in range(maxCycle):
for j in range(m):
h = sigmoid(dataMatrix * weights) # sigmoid 函数
weights = weights + alpha * dataMatrix.transpose() * (labelMat - h) # 梯度
if np.linalg.norm(weights - error) < epsilon:
break
else:
error = weights
return weights
# 逻辑回归
def pred_result(dataMatIn):
dataMatrix = np.mat(dataMatIn)
r = Stocgrad_descent(dataMatIn, classLabels)
p = sigmoid(dataMatrix * r) # 根据模型预测的概率
# 预测结果二值化
pred = []
for i in range(len(data)):
if p[i] > 0.5:
pred.append(1)
else:
pred.append(0)
data["pred"] = pred
os.remove("data_and_pred.csv") # 删除List_lost_customers数据集 # 第一次运行此代码时此步骤不要
data.to_csv("data_and_pred.csv", index=False, encoding="utf_8_sig") # 数据集保存
pred_result(dataMatIn)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持python博客。
Powered By python教程网 鲁ICP备18013710号
python博客 - 小白学python最友好的网站!