本文实例为大家分享了python实现梯度下降法的具体代码,供大家参考,具体内容如下
使用工具:Python(x,y) 2.6.6
运行环境:Windows10
问题:求解y=2*x1+x2+3,即使用梯度下降法求解y=a*x1+b*x2+c中参数a,b,c的最优值(监督学习)
训练数据:
x_train=[1, 2], [2, 1],[2, 3], [3, 5], [1,3], [4, 2], [7, 3], [4, 5], [11, 3], [8, 7]
y_train=[7, 8, 10, 14, 8, 13, 20, 16, 28,26]
测试数据:
x_test = [1, 4],[2, 2],[2, 5],[5, 3],[1,5],[4, 1]
# -*- coding: utf-8 -*-
"""
Created on Wed Nov 16 09:37:03 2016
@author: Jason
"""
import numpy as np
import matplotlib.pyplot as plt
# y=2 * (x1) + (x2) + 3
rate = 0.001
x_train = np.array([[1, 2], [2, 1],[2, 3], [3, 5], [1, 3], [4, 2], [7, 3], [4, 5], [11, 3], [8, 7] ])
y_train = np.array([7, 8, 10, 14, 8, 13, 20, 16, 28, 26])
x_test = np.array([[1, 4],[2, 2],[2, 5],[5, 3],[1, 5],[4, 1]])
a = np.random.normal()
b = np.random.normal()
c = np.random.normal()
def h(x):
return a*x[0]+b*x[1]+c
for i in range(100):
sum_a=0
sum_b=0
sum_c=0
for x, y in zip(x_train, y_train):
for xi in x:
sum_a = sum_a+ rate*(y-h(x))*xi
sum_b = sum_b+ rate*(y-h(x))*xi
#sum_c = sum_c + rate*(y-h(x)) *1
a = a + sum_a
b = b + sum_b
c = c + sum_c
plt.plot([h(xi) for xi in x_test])
print(a)
print(b)
print(c)
result=[h(xi) for xi in x_train]
print(result)
result=[h(xi) for xi in x_test]
print(result)
plt.show()
运行结果:
结论:线段是在逐渐逼近的,训练数据越多,迭代次数越多就越逼近真实值。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持python博客。
标签:numpy matplotlib
Powered By python教程网 鲁ICP备18013710号
python博客 - 小白学python最友好的网站!